

McDonnell Douglas

Douglas Aircraft Company

DOUGLAS AIRCRAFT COMPANY
TORRANCE (C6) FACILITY
PRELIMINARY PHASE III
GROUNDWATER AND SOIL
INVESTIGATION REPORT

Prepared for:

Douglas Aircraft Company 19503 South Normandie Los Angeles, California 90502

Prepared by:

Woodward-Clyde Consultants 203 North Golden Circle Drive Santa Ana, California 92705

> Project No. 8941863J March 1990

(2L-ABC/C6GW3-R)

TABLE OF CONTENTS

1.0	INTRODUCTION 1
2.0	SCOPE AND OBJECTIVES 1 2.1 Task I 3 2.2 Task IA 3 2.3 Task III 4
3.0	FIELD PROGRAM
4.0	RESULTS 6 4.1 Geology 6 4.2 Slug Testing Results 8 4.3 Pump Test Results 8 4.4 Groundwater Gradient and Velocity 9 4.5 Soil Sampling and Analytical Results 11 4.6 Groundwater Sampling and Analytical Results 12
5.0	EVALUATION OF GROUNDWATER TREATMENT OPTIONS
6.0	REFERENCES
	LIST OF FIGURES Site Location Map
2	Site Location Map 3 Site Map 3 Tentative Groundwater Contours 10
	LIST OF TABLES
2	Slug Test Data Reduction

(2L-ABC/C6GW3-R.toc)

LIST OF APPENDICES

- Field Procedures and Aquifer Testing Data Analysis Boring Logs Analytical Results Α
- B C

(2L-ABC/C6GW3-R.toc)

DOUGLAS AIRCRAFT COMPANY'S TORRANCE (C6) FACILITY PRELIMINARY PHASE III GROUNDWATER AND SOIL INVESTIGATION REPORT

1.0 INTRODUCTION

The purpose of this report is to present the results of Task I and IA of the Phase III groundwater and soil investigation at the Douglas Aircraft Company's Torrance (C6) facility. The C6 facility is located at 19503 South Normandie Avenue in Los Angeles, California (Figure 1). Woodward-Clyde -Consultants (Woodward-Clyde) has conducted two previous investigations (1987 and 1988) in the area of Tank Cluster 15T through 18T. The results from these investigations identified this tank cluster as a potential source of volatile organic compounds (VOCs) identified in the Additional background information groundwater. and earlier analytical results from these Woodward-Clyde investigations can be found in the reports submitted to the California Regional Water Quality Control Board (CRWQCB), Los Angeles Region dated April 1987 and 10 May 1988.

2.0 SCOPE AND OBJECTIVES

The specific scope and objectives of the Phase III groundwater and soil investigation are outlined below. Objectives were to:

- 1. Evaluate the quality of the groundwater entering the site in the apparent hydraulic upgradient direction of Tanks 15T through 18T.
- 2. Assess the lateral and vertical extent of VOCs in the groundwater in the vicinity of Tanks 15T through 18T.

- 3. Evaluate the potential for offsite migration of VOCs in the groundwater.
- 4. Obtain quantitative estimates for aquifer parameters in the shallow and deep zones within the semi-perched aquifer (to depths of 130 to 150 feet). These parameters are required for design of a remedial program.
- 5. To estimate the lateral and vertical extent of VOCs in the soil around Tank Cluster 15T through 18T.

These objectives were accomplished using an approach comprised of the following tasks:

- o Task I Installation of five shallow (70 to 90 feet) observation wells (WCC-6S, -7S, -8S, -9S, and -10S) and two deep (120 to 140 feet) observation wells (WCC-1D, and -3D). In addition, Task I involved advancing four soil borings in the vicinity of Tank Cluster 15T through 18T.
- o Task IA Slug testing of five shallow wells and two deep wells.
- o Task III Aquifer testing.
- o Task IV Evaluation of data and report preparation.

The background for this investigation and a description of the tasks is described in Woodward-Clyde's work plan approved by the CRWQCB entitled "Douglas Aircraft Company Torrance (C6) Facility Phase III Ground Water and Soil Investigation Work Plan," dated 9 February 1989. This report presents the results obtained to date from Tasks I, IA, III and IV. No Task II wells had been installed at the time this report was prepared. Task II wells were not considered necessary at this time, for this phase of investigation, based on results from Task I wells.

2.1 Task I

The work performed during Task I involved advancing four soil borings (B-6, -7, -8, and -9), each to a depth of approximately 65 feet, around Tank Cluster 15T through 18T, to evaluate the extent of VOCs in this area. This task also involved installing wells at two depths in the upper water-bearing unit called the semi-perched aquifer. upper zone wells are screened from 60 to 90 feet below ground surface, with the static water level at approximately 70 feet below ground surface. These upper zone wells will henceforth be referred to as "shallow" wells. The lower zone wells are screened from 120 to 140 feet below ground The lower zone wells will henceforth be referred surface. to as "deep" wells. The installation of observation wells within the upper and lower zones of the semi-perched aquifer was designed to evaluate differences in vertical gradient and concentrations of VOCs within the semi-perched aquifer. Observation Wells WCC-1D, -3D, -6S, -7S, -8S, -9S, and -10S have been installed in accordance with Task I of the work plan. The observation well locations are shown on Figure 2. Task I also included development of the observation wells, and the collection and analysis of groundwater samples. Wells WCC-1S through WCC-5S had been installed during an earlier phase of work.

2.2 Task IA

The objective of Task IA was to conduct slug tests on six shallow wells and two deep observation wells to provide preliminary estimates of hydraulic conductivity in the shallow and deep zones of the semi-perched aquifer. These data have been used in estimating groundwater velocity and the distribution of VOCs in the groundwater within the subject area.

2.3 Task III

Woodward-Clyde conducted a pump test at the Torrance facility to observe the response of the semi-perched aquifer to hydraulic stresses created by pumping.

3.0 FIELD PROGRAM

3.1 Soil Boring Installation

Four soil borings, B-6, -7, -8, and -9, were drilled around Tank Cluster 15T through 18T, as shown on Figure 2. Each soil boring was drilled to a depth of 66.5 feet below ground surface. The purpose of the borings was to assess the vertical and horizontal extent of VOCs in the vadose zone soil in the vicinity of the tanks. Borings B-6 and B-7 were placed along the south side of the tanks, while Borings B-8 and B-9 were placed about 40 feet away, to the east and north of the tanks, respectively.

Field procedures used for drilling and sampling activities are described in Appendix A. The lithologic boring logs from B-6, -7, -8, and -9 are presented in Appendix B. The results of soil sample analyses from these borings are presented in Section 4.4.

3.2 Observation Well Installation

Seven observation wells were installed during Task I of this investigation, as previously discussed in Section 2.1. Five of the wells were completed to a depth of 90 feet, and two were completed to a depth of 140 feet. The locations of these wells are shown on Figure 2 and the procedures involved in the installation are described in Appendix A.

Of the five shallow wells, the first, WCC-10S was completed near the northwest corner of the property. This location was chosen to provide information on the quality of

groundwater entering the site. The second and third wells, WCC-7S and -8S, were installed downgradient of Tank Cluster 15T-18T to assist in evaluating the lateral extent of VOCs in the groundwater. Observation Well WCC-7S was placed about 160 feet south of WCC-4S, and WCC-8S was placed approximately 125 feet north of WCC-1S. These locations were chosen considering variations in the direction of groundwater flow (southeast) previously measured at the site, and the concentration level of VOCs in WCC-1S, -3S, and -4S.

The two deep wells were installed to assess the possibility of VOCs migrating vertically downward into the lower zone of the semi-perched aquifer. Well WCC-3D was installed approximately 30 feet east of the tank cluster, and WCC-1D was completed about 190 feet east-southeast of WCC-3D, next to WCC-1S. These wells were also installed to evaluate the differences in hydraulic conductivity between the deep and the shallow zones of the aquifer.

As proposed in the Phase III work plan, Wells WCC-6S and WCC-9S were installed after receiving chemical analysis results from the three initial shallow observation wells (i.e., WCC-7S, -8S, and -10S). Because the results indicated VOCs were present at elevated concentrations in WCC-7S, Wells WCC-6S and WCC-9S were installed in locations which could intercept a more south to southeast path of migration than the wells previously installed.

3.3 Observation Well Slug Testing

Task IA involved conducting slug tests on six shallow wells, and two deep wells, to obtain estimates of horizontal hydraulic conductivity (k) values in the immediate vicinity of the six wells for the shallow and deep zones. Slug tests were completed on shallow Wells WCC-4S, -5S, -7S, -8S, -9S,

and -10S. Two deep wells WCC-1D and WCC-3D were also slug 19 July, 31 August, Testing dates were and tested. 4 October 1989. An Envirolabs Data Logger, model DL-120-MCP equipped with a pressure transducer was used for raw data Slugs of water being introduced and withdrawn collection. from each well were simulated by volume displacement using a 39-inch-long, 3.25-inch-diameter mandrel constructed of PVC pipe and plugs, and filled with silica sand. The slug test procedures and subsequent data analysis are described in Appendix A, while the slug test results are discussed in Section 4.2.

3.4 Pump Test

As part of Task III of this investigation, Woodward-Clyde conducted a 30-hour, constant discharge pumping test on 20 through 21 December 1989 at the Torrance (C6) facility. Well WCC-4S was pumped using a 1-1/2 horsepower submersible Observation wells included WCC-1S, -4S, -6S, -7S, -8S, -9S, and -1D. Five of the wells were automatically monitored for water level using three Terra-8 data loggers equipped with a total of five pressure transducers. addition water levels were measured at regular intervals for all of the wells except WCC-1S, -1D, and -4S (monitored by data logger), using a Solonist electrical well sounder. Water level monitoring continued from the time the pump was switched on until two hours after the pump was switched off. The pump test procedures and the subsequent data analysis are described in Appendix A and the pump test results are discussed in Section 4.3.

4.0 RESULTS

4.1 Geology

The general description of shallow (less than 90 feet below ground surface) geologic deposits beneath the site was

4.2 Slug Testing Results

Results from slug testing of Observation Wells WCC-4S, -5S, and -3D, including the data -7S, -8S, -9S, -10S, -1D, Hydraulic summarized in Table 1. reduction, are conductivity values ranged from 24 to 140 gallons per day per square foot (gpd/ft²) in the shallow wells. values are typical of the sandy silts and silty sands encountered during drilling in the shallow water bearing zones of the semi-perched aquifer. The calculated hydraulic conductivity values were 21 gpd/ft2 WCC-1D for 6.6 gpd/ft² for WCC-3D.

4.3 Pump Test Results

The pump test data from each well showing a discernible response were analyzed using one or more of the following techniques: Recovery (Residual Drawdown) plot, Cooper-Jacob Time Drawdown plot, and/or Distance/Drawdown plot. A summary of the results is presented in Table 2. Slug test values obtained earlier are included for reference.

The hydraulic conductivity value derived from the pump test at the pumping well, WCC-4S, was 470 gpd/ft² based on analyses of recovery data (residual drawdown). This compares favorably with the pump test values calculated by both the Cooper-Jacob method and the Distance Drawdown method using data from the surrounding observation wells. Overall, the calculated hydraulic conductivity values vary within a factor of two (see Table 2). Local variations in stratigraphy can easily account for this level of variability.

The conductivity values calculated from the slug tests are not directly comparable with conductivity values calculated from the pump test, since the former only tests the portion of the aquifer immediately adjacent to the well screen,

while the pump test stresses a much larger volume of the aquifer. Overall the slug test hydraulic conductivity values are roughly on an order of magnitude lower than the pump test values. This level of variability is not surprising given that the specific assumptions and mechanics of the two test techniques are remarkably different.

Variations in the storage coefficients are somewhat greater than those for transmissivity. Fairly wide variations in the calculated storage coefficient are not unusual and, in general, have a minimal impact on the calculated yield.

4.4 Groundwater Gradient and Velocity

The groundwater gradient was calculated from the groundwater elevation data collected on 18 October 1989 (see Table 3), using Equation 1-1 as follows:

$$I = \frac{h_1 - h_2}{L} \tag{1-1}$$

Where:

[= Gradient (ft/ft)

 h_1 = Upgradient groundwater contour elevation (feet)

 h_2 = Downgradient groundwater contour elevation (feet)

L = Distance between groundwater contours (feet)

Based on groundwater level data of 18 October 1989, the gradient across the C6 facility appears to be south to southeast as shown on Figure 3. The gradient was calculated using the assumption that all water bearing strata in this

area act as one hydrogeologic unit. This assumption is considered valid for preliminary evaluation of flow velocity and the extent of VOCs in the groundwater.

A gradient of 0.002 towards the south-southeast was calculated using Equation 1-1.

The groundwater velocity was calculated from Darcy's equation:

$$V = \frac{KI}{7.48 n_{\bullet}} \tag{1-2}$$

Where:

V = Groundwater velocity (feet per day)

K = Hydraulic conductivity of the media based on slug test values calculated in Section 4.3 (gal/day/ft²)

f = Groundwater gradient calculated from Equation 1-1

7.48 = The number of gallons of water per cubic foot

 n_a = Effective porosity of the saturated media

Assuming:

K = 715 gal/day/ft² for shallow wells
NOTE: The hydraulic conductivity value used in the
calculation was the average of the values obtained
from all the pump test analytical methods used.

/ = 0.002 ft/ft calculated from Equation 1-1

 n_a = 0.30 for silty fine-grained sand.

Based on the calculations and assumptions above, the groundwater velocity is approximately 0.64 feet per day or 234 feet per year in the shallow zone of the semi-perched aquifer.

There does not appear to be a significant vertical groundwater gradient between the shallow and deep aquifers. The approximately equal static groundwater levels measured in the associated shallow and deep observation wells WCC-1S and -1D, and WCC-3S and -3D, indicate the major component of groundwater flow is horizontal.

4.5 Soil Sampling and Analytical Results

Soil samples were collected from all the observation wells and soil borings installed during the field program as described in Appendix A. Samples which had elevated OVA headspace readings and which were in close proximity to tank Cluster 15T through 18T, as well as samples from WCC-6S, were selected for analytical testing. Soil samples at selected depths from B-6, B-7, B-8, B-9, and WCC-6S were analyzed by EPA Method 8240 at West ast Analytical Service (WCAS) in Santa Fe Springs. A summary of results is presented in Table 4, while the analytical data sheets provided by WCAS, and chain-of-custody forms are presented in Appendix C.

The soil sampling results show low concentrations of organic compounds present in most of the borings installed around tank cluster 15T through 18T. Boring B-6 seems to be located near the source of the release. At this location the soil column contained elevated levels of organic compounds beginning at a depth of 20 feet and continuing down to at least 60 feet. At the other boring locations the organic compound concentrations became elevated at depths of 40 feet or more. Both halogenated and nonhalogenated

compounds are present at location B-6, with the higher concentrations of each present at a depth of 20 feet. Toluene was the dominant nonchlorinated hydrocarbon present trichloro-1,1,1-trichloroethane (1,1,1-TCA) and ethylene (TCE) were the dominant chlorinated hydrocarbons. At Boring B-7, which is located about 30 feet east of Boring B-6, a similar mix of compounds is present, however, their concentrations are at a greater depth in the boring. highest concentrations of compounds are present at a depth of 60 feet, with methylene chloride identified in the soil for the first time at this depth. Samples from Boring B-8, which is located east of the tank cluster, also contained low (<1 ppm) concentrations of compounds except for toluene, which was present at 25 ppm at a depth of 65 feet. from Boring B-9, which is north of the tank cluster, also concentrations of compounds at contained low (generally less than 1 ppm).

Three samples collected at, and just below, the water table from the borehole in which Well WCC-6S was installed, contained low concentrations of MEK (9.4 ppm), MIBK (8.4 ppm), toluene (1 ppm), and a compound tentatively identified as butyl cellosolve (0.3 ppm).

4.6 Groundwater Sampling and Analytical Results

During this task, two rounds of groundwater samples were collected and analyzed during July and August from monitoring Wells WCC-1D, -3D, and -1S through -10S, except WCC-6S and WCC-9S. These two wells were the most recently installed, and water sampling was completed the first week in October. The procedures used during these sampling efforts are described in Appendix A.

All of the water samples tested, including groundwater samples, duplicates, rinse blanks, and trip blanks, were analyzed for VOCs by EPA Method 624 by WCAS. For the first round of sampling, one sample from each well, two duplicate samples, three rinse blanks, and one trip blank were analyzed. Analysis of water samples from the second round included one sample from each well, two rinse blanks, and one trip blank.

The groundwater analytical results are summarized in Table 5. Analytical data sheets provided by WCAS, and chain-of-custody forms are attached in Appendix C.

The data indicate that of the 10 shallow wells sampled at the facility only WCC-2S, located upgradient to the northwest of Tanks 15T through 18T, -5S, and -9S, both located along the eastern boundary of the site, contained total VOCs at or below 30 ppb, predominantly TCE. One well, WCC-10S, contained TCE at about 80 ppb and less than 5 ppb of chloroform. The other six shallow wells all contained a similar mix of VOCs, with the dominant compounds being TCE, 1,1-dichloroethene (1,1-DCE), and 1,1,1-TCA, with lower concentrations of cis-1,2-dichloroethene (cis-1,2-DCE) also present.

The deep well closest to the tank cluster (WCC-3D) contained 1,1,1-TCA at concentrations of around 50 ppb on the first occasion the well was sampled. Trace amounts of TCE, toluene, and cis-1,2-DCE were also present. When the well was resampled one month later only 1,1,1-TCA was detected, but the detection limits were ten times higher for the other compounds measured in the first round of sampling because of a laboratory error. Samples from the other deep well

(WCC-1D), contained low concentrations of 1,1,1-TCA (1 ppb), TCE (2 ppb), and cis-1,2-DCE (1 ppb). The total VOC concentration in Well WCC-1D was less than 10 ppb.

The water quality data collected to date indicate the presence of TCE in the groundwater (Well WCC-10S) entering DAC's Torrance (C6) facility. The TCE concentration was at approximately 80 ppb, nearly an order of measured magnitude higher than the TCE concentration in Well WCC-2S, upgradient of Tanks 15T through 18T, and Wells WCC-5S and -9S at the downgradient boundary of the site. Wells WCC-7S and WCC-8S are located south and north, respectively, of the previously identified area of groundwater containing VOCs. Concentrations of VOCs in these two wells are greater than concentrations in the upgradient well, indicating that the north-south extent of the organic compounds in the groundwater has not been fully established.

5.0 EVALUATION OF GROUNDWATER TREATMENT OPTIONS

Concurrent with field investigations performed by Woodward-Clyde at the Torrance facility, an evaluation was made of treatment options for groundwater containing chlorinated and non-chlorinated hydrocarbons at the site. It was originally the intent of Douglas Aircraft Company to conduct a pilot evaluation of groundwater treatment systems using water produced during the pump test at the site. However, the quantity of water produced during the pump test was not enough for pilot tests, and so bench scale The tests will be conducted evaluation will be conducted. on some of the systems described in the following sections.

5.1 Description of Treatment Options

There are many treatment systems for the removal of organic compounds from groundwater. Three of these systems are:

- o Activated Carbon Adsorption
- o Air/steam Stripping
- o Oxidation

Woodward-Clyde assumed a flow rate of 50 gallons per minute (gpm) and organic concentrations at the levels found in WCC-4S for the characteristics of the influent in this treatment evaluation. The effluent organic concentrations assumed for this evaluation were the California State Action Levels.

5.1.1 Activated Carbon Adsorption

The process of adsorption onto activated carbon involves contacting the organic contaminated groundwater with the carbon, by flow through a series of packed bed reactors. The activated carbon selectively adsorbs chemical constituents by a surface attraction phenomenon in which organic molecules are attracted to the internal pores of the carbon granules.

Once the micropore surface are saturated with organics, the carbon is "spent" and must be replaced with regenerated or virgin carbon. The time to reach "breakthrough" or exhaustion is the most critical operating parameter. Carbon longevity balanced against influent concentrations governs the operating economics.

5.1.2 Air Stripping

Air or steam stripping is a mass transfer process in which organic constituents in groundwater are transferred to the gas phase (in air/steam). Air or steam stripping is frequently accomplished in a packed tower equipped with an air blower. The packed tower works on the principle of countercurrent flow. The influent water flows down through

the packing, while the air/steam flows upward, and is exhausted through the top. Volatile, soluble components have an affinity for the gas phase and tend to leave the aqueous stream for the gas phase. The gas phase effluent must be controlled. This is usually accomplished by using a carbon scrubber for air stripping and a vapor condenser followed by product-water separator for steam stripping.

Woodward-Clyde reviewed the Ejector System, Inc. cascade air stripping. This system is designed to accommodate field changes by allowing for the addition or subtraction of cascade tray modules as conditions dictate. The system is low profile and units are typically shipped completely assembled. Other systems, such as the Aquadetox process, use the same basic principles.

5.1.3 Oxidation

Treatment of groundwater using oxidation is not a new process. New applications using hydroxyl radicals as the oxidizing agent are now available. These radicals can be produced by: ultraviolet (UV) light, hydrogen peroxide, and/or cavitation reactions. Organic constituents are oxidized to carbon dioxide and water by the hydroxyl radicals.

Two types of oxidation systems which Woodward-Clyde evaluated were the CAV-OX process and the Perox-pure process. The CAV-OX process uses induced cavitation and UV light to allow oxidation to occur. The Perox-pure system uses hydrogen peroxide and UV light to cause the oxidation process.

Representatives from each of the vendors expressed the need for bench scale testing in order to better estimate the operation and maintenance costs associated with their

Such evaluations will be conducted by Douglas Aircraft after bench scale testing has been completed to aid in the selection of an appropriate system.

5.2 Discussion

During this alternative review, vendors contacted indicated that treatability studies done on laboratory scale are Generally this fee is charged to completed for a fee. recoup analytical analysis cost incurred during the testing Two types of systems will be evaluated by Douglas Aircraft Company for possible treatment methods for of the systems. the C6 facility: air/steam stripping and oxidation. laboratory tests will allow vendors to better conceptualize the required treatment scheme. Also, this will allow an analysis of capital and operation costs for each system and it will help to evaluate the effectiveness of the systems.

6.0 REFERENCES

- Driscoll, Fletcher G., Groundwater and Wells, 2nd Edition, Johnson Division, St. Paul, Minnesota, 1986.
- Design and Walton, William C., Groundwater Pumping Tests: Analysis, Lewis Publishers, 1987.
- Woodward-Clyde Consultants, Leak Investigation at Douglas Aircraft Company's C6 Facility, Los Angeles, California, April 1987.
- Woodward-Clyde Consultants, Final Report on Phase III of the Subsurface Investigation at Tanks 19T and 20T at the C6 Facility, revised May 1988.

PROJECT: DOUGLAS AIRCRAFT CO.

PROJECT NO. 8941863J

C6 FACILITY LOCATION MAP

FIG. 1

WOODWARD-CLYDE CONSULTANTS

TABLE 1 SLUG TEST DATA REDUCTION

DOUGLAS AIRCRAFT C6 FACILITY, TORRANCE CALIFORNIA

Where:

K = Hydraulic Conductivity

Rc = Radius of well casing in feet

Re = Effective Radius of influence (ft)

Yo = Initial drawdown at time t =0 (sec)

H = Distance from base of well to SWL (ft)

A = Constant Based on L/Rw

Yt = Drawdown at time t (sec)

Dw = Depth of well (ft)

Depth to water(ft) - Measured 19 July, 30 August, and 4 October 1989.

Rw = Radius of Boring in feet

L = Length of screen of saturated thickness if entire screen is not saturated in feet

t = Selected time/drawdown semi-log plot (sec)

D = Thickness of aquifer in feet

(Bottom of aquifer approx. 150 feet)

B = Constant based on L/Rw

	wcc	C-4S	WC	C-5S	WCC-7S WC			C-8S
Parameter	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Rc	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Rw	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Dw	90	90	90	90	90	90	90	90
DTW	69.35	69.35	69.69	69.69	68.41	68.41	70.01	70.01
L = (Dw-DTW)*	20.65	20.65	20.31	20.31	21.59	21.59	19.99	19.99
D = (150-DTW)	80.65	80.65	80.31	80.31	81.59	81.59	79.99	79.99
H = (Dw-DTW)	20.65	20.65	20.31	20.31	21.59	21.59	19.99	19.99
A	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
В	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L/Rw	49.17	49.17	48.36	48.36	51.40	51.40	47.60	47.60
Yo	0.87	1.5	0.65	2.05	0.84	1.5	0.94	1.5
Yt	0.28	0.33	0.16	0.61	0.38	0.7	0.62	1
t	20	20	11	10	20	20	20	20
Ln Re/Rw =	2.52584	2.52584	2.50616	2.50616	2.57881	2.57881	2.48737	2.48737
K (ft/sec) =	1.00E-04	1.34E-04	2.27E-04	2.16E-04	6.85E-05	6.58E-05	3.74E-05	3.65E-05
AVG K (ft/sec)	1.17E-04		2.22E-04		6.71E-05		3.69E-05	
AVG K (CM/SEC)	3.57E-03		6.76E-03		2.05E-03		1.13E-03	
AVG K (Gal/day/ft2)	7.56E+01		1.43E+02		4.34E+01		2.39E+01	

TABLE 1 (Continued)

	wcc	-9S	WCC	-10S	WCC	WC	WCC-3D	
Parameter	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Rc	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Rw	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Dw	90	90	90	90	140	140	140	140
DTW	67.17	67.17	69.51	69.51	70.09	70.09	70.62	70.62
L = (Dw-DTW)*	22.83	22.83	20.49	20.49	20	20	20	20
D = (150-DTW)	82.83	82.83	80.49	80.49	79.91	79.91	79.38	79 .38
H = (Dw-DTW)	22.83	22.83	20.49	20.49	69.91	69.91	69.38	69.38
A	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
В	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L/Rw	54.36	54.36	48.79	48.79	47.62	47.62	47.62	47.62
Yo	0.91	1.9	0.96	1.5	2.25	2.4	1.68	1.7
Yt	0.16	0.21	0.56	0.83	0.39	0.52	1.23	1.36
t	. 71	77	20	20	117	117	60	60
Ln Re/Rw =	2.64567	2.64567	2.51661	2.51661	3.19028	3.19028	3.18702	3.18702
K (ft/sec) =	4.10E-05	4.79E-05	4.78E-05	5.25E-05	3.45E-05	3.01E-05	1.20E-05	8.56E-06
AVG K (ft/sec)	4.44E-05		5.02E-05		3.23E-05		1.03E-05	
AVG K (CM/SEC)	1.36E-03		1.53E-03		9.86E-04		3.13E-04	
AVG K (Gal/day/ft2)	2.87E+01		3.24E+01		2.09E+01		6.63E+00	

TABLE 2
SUMMARY OF AQUIFER HYDRAULICS TESTING

		Hydraulic Condu		
Well No.	Well No. Slug Test ^a Pump Test		Pump Test ^b Analysis Method	Coefficient of Storativity (S) (from pump test)
1\$	••	460	Cooper Jacob	0.014
2\$	NT	NM		
3\$	NT	ND	-	
4\$	76	470	residual drawdown	
5S	140	NM		
6S	NT	970	Cooper Jacob	0.004
7\$	43	970	Cooper Jacob	0.013
8S	24	560	Cooper Jacob	0.009
9\$	29	NR		
10S	32	NM		
1D	NT	NR		••
3D	6.6	NM	-	
1S, 6S, 7S, 8S		860	Distance drawdown (500 minutes)	0.007

a Slug test values included for reference, generally not directly comparable to pump test values.

b WCC-4S was pumping well.

NT Not tested.

NR Not responsive.

NM Not monitored.

TABLE 3

GROUND WATER ELEVATION DATA COLLECTED 18 OCTOBER 1989
DOUGLAS AIRCRAFT C6 FACILITY, TORRANCE, CALIFORNIA

Well No.	Elevation ¹ Top of Well ² (ft)	Elevation of Ground Water (ft)		
WCC-1S	50.70	70.18	-19.48	
WCC-2S	50.59	69.65	-19.06	
WCC-3S	51.19	70.61	-19.42	
WCC-4S	49.69	69.28	-19.59	
WCC-5S	48.22	67.92	-19.70	
WCC-6S	50.95	70.65	-19.70	
WCC-7S	48.29	68.36	-20.07	
WCC-8S	50.56	69.91	-19.35	
WCC-9S	47.01	67.08	-20.07	
WCC-10S	51.12	69.54	-18.42	
WCC-1D	50.45	69.96	-19.51	
WCC-3D	51.18	70.56	-19.38	

- 1 Reference: City of Los Angeles Benchmark CY-3028, datum is Mean Sea Level (MSL).
- 2 Top of well is top of well casing on north side marked with permanent ink.

TABLE 4

RESULTS OF SOIL ANALYSES AT DAC C6 FACILITY

Boring Number	Depth of Sample (feet)	Halogenate (EPA Metho	d and Aromatic Volatile Organics od 8010/8020, concentrations in ppm)
B-6	10	0.053 0.011 0.016 0.064 0.001 0.009	methylene chloride DCA TCE toluene ethylbenzene total xylenes
B-6	20	12 45 1,900 51 390	TCA TCE toluene ethylbenzene total xylene
B-6	30	48 21	toluene total xylenes
B-6	30	19 6	toluene total xylenes
B-6	40	59 23 320 2.9 21	TCA TCE toluene ethylbenzene total xylenes
B-6	50	0.06 0.09 0.53 0.035 0.31 0.03	1,1-dicholoroethylene DCA TCA TCE toluene total xylenes
B-6	60	7.7 9.9 2.9	TCA toluene total xylenes
B-7	30	0.15 0.09 1.7 0.09	TCA TCE toluene total xylenes
B-7	35	1	total xylenes
B-7	40	10 40 1	TCA toluene total xylenes

(2L-ABC/C8GW3-T3)

TABLE 4 (continued)

Boring Number	Depth of Sample (feet)	Halogenated and Aromatic Volatile Organics (EPA Method 8010/8020, concentrations in ppm)				
B-7	40	12/10 25/40 <1	TCA toluene xylenes			
B-7	50	57 880 4 41 1.7	1,1-dichloroethylene TCA 1,1,2-trichloroethane toluene total xylenes			
B-7	60	20,000 600 59,000 140 450	methylene chloride 1,1-dichloroethylene TCA tetrachloroethylene toluene			
B-8	45	0.27	toluene			
B-8	50	0.04	toluene			
B-8	60	0.04 0.44 1.0	DCA TCA toluene			
B-8	65	0.05 25	TCA toluene			
B-9	40	0.03 0.02 0.08 0.1	DCA TCA TCE toluene			
B-9	50	0.02 0.11	TCE toluene			
B-9	55	0.03 0.06	TCA toluene			
WCC-6S	75	9.4 8.4 1.0 0.30	MEK MIBK Toluene Butyl Cellosolve			

TABLE 4 (continued)

Boring Number	Depth (feet)	Halogenated and Aromatic Volatile Organics (EPA Method 8010/8020, concentrations in ppm)
WCC-6S	80	9.2 MEK .24 DCE 2.50 MIBK 2.20 toluene .08 TCE 0.70 butyl cellosolve
WCC-6S	85	.550 MEK .330 MIBK .150 toluene .007 TCE

Borings 8 and 9 sampled on 6/14/89, Borings 6 and 7 sampled on 6/13/89.

MEK, 2-Butanone MIBK, 4-methyl-2-pentanone TCA, 1,1,1-trichloroethane TCE, trichloroethylene DCE, 1,1-dichloroethylene

TABLE 5
GROUND WATER ANALYTICAL DATA AT DOUGLAS AIRCRAFT C6 FACILITY, TORRANCE, CALIFORNIA (Concentration in ug/l)

			COMPOUND								
WELL I.D.	SAMPLE DATE	1,1-DCE	1,1-DCA	1,1,1-TCA	TCE	MIBK	trans-1,2-DCE	Chloroform	Toluene	Benzene	cis-1,2-DCE
WCC-1S	03/27/87 04/13/87* 11/12/87 07/13/89 08/23/89	2,800 3,700/2,500 3,000 900 1,500	-/- 23 <20 <30	300 260/120 160 67 <30	4,600 5,500/3,600 5,200 2,400 2,800	/- /- < 100 < 100	 / 75 <20 <30	 /- 39 <20 <30	 -/- <20 <30	85 110/- 160 <20 <30	 <20 41
WCC-2S	11/02/87 11/12/87 07/13/89 08/23/89	5 2 <1 <1	- - <1 <1	5 - <1 <1	14 4 5 3	 <5 <5	- - <1 <1	- - <1 <1	6 1 <1 <1	- <1 <1	- - <1 <1
WCC-3S	11/02/87 11/12/87 07/13/89 08/23/89	38,000 88,000 18,000 56,000	1,000 <500 <1,000	110,000 54,000 56,000 78,000	10,000 11,000 7,700 6,000	54,000 70,000 <3,000 <5,000	1,000 660 <1,000	 < 500 < 1,000	80,000 140,000 32,000 56,000	 < 500 < 1,000	 <500 <1,000
WCC-4S	11/02/87 11/12/87 07/13/89 08/23/89	360 1,200 170 360	 -3 <5	14 35 11 7	700 690 270 410	 <20 <30	2 <3 <5	2 <3 <5	 -3 <5	 <3 <5	- 10 15
WCC-5S	11/30/87 01/08/88 07/13/89* 08/23/89	7 4 3/3 <1	 <1/<1 <1	 - <1/<1 <1	1 10 13/12 12	 <5/<5 <5	- - <1/<1 <1	 <1/<1 <1	1 <1/<1 <1	- <1/<1 <1	6/6
WCC-6S	10/6/89	210	4	130	140	<5	7	<1	<1	<1	12
WCC-7S	07/13/89 08/23/89	850 1,100	<10 <30	110 66	1,300 1,400	<50 <100	11 <30	<10 <30	<10 <30	<10 <30	26 31
WCC-8S	07/13/89 08/23/89	430 820	<5 <5	160 130	240 430	<30 <30	9 <5	<5 <5	<5 <5	<5 <5	7 7
WCC-9S	10/6/89	<1	<1	<1	15	<5	<1	<1	<1	<1	7
WCC-10S	07/13/89* 08/23/89	2/1 4	<1/<1 <1	<1/<1 <1	86/87 81	<5/<5 <5	<1/<1 <1	3/3 4	<1/<1 <1	<1/<1 <1	<1/<1 <1
WCC-1D	07/25/89 08/23/89	<1 <1	<1 <1	<1 1	2 2	<5 <5	<1 <1	<1 <1	1 <1	<1 <1	1 <1
WCC-3D	07/25/89 08/23/89	<1 <10	<1 <10	49 32	4 <10	<5 <50	<1 <10	<1 <10	3 <10	<1 <10	11 <10

Duplicate sample also analyzed
 Not Detected (Detection limit not specified)

APPENDIX A

FIELD PROCEDURES
AND
AQUIFER TESTING DATA ANALYSIS

APPENDIX A

FIELD PROCEDURES AND AOUIFER TESTING DATA ANALYSIS

A.1 GENERAL INFORMATION

Drilling was performed by two companies: A&R Drilling, Inc. of Carson; and Beylik Drilling, Inc. of La Habra California. Drilling began on 5 June 1989 and was completed on 30 June 1989. Soil sample borings and shallow observation well borings were drilled using a CME-75 drill rig equipped with 6-1/2 inch O.D. hollow stem augers for soil sampling and 11-inch O.D. hollow stem augers for well installation. The deep observation well borings were completed by mud rotary drilling using an Ingersoll-Rand drill rig equipped with a 10-inch tri-cone drill bit.

A.1.1 Shallow Observation Well Installation

Observation Wells WCC-7S, 8S, and 10S were constructed of threaded 4-inch diameter, Schedule 40 PVC casing and screen approximately 90 feet. depth of set to a observation wells were installed by first drilling sampling borehole with the 6-1/2-inch outside diameter In general, soil samples were (O.D.) hollow stem augers. collected at near-surface, 5 feet and then at approximately Next, these augers were removed from the 5 foot intervals. boring and the 11-inch O.D. hollow stem augers with a wooden plug placed in the bottom were used to ream out the boring Upon reaching total depth to its total depth of 90 feet. the inside of the augers were quickly filled with tap water and the wooden plug was knocked out of the bottom auger. The water was used to form hydrostatic pressure in the augers to help hold out the surging sands which would otherwise fill up the inside of the bottom augers and prevent a proper well installation. After knocking out the wooden plug, the 4-inch diameter wells were installed by inserting the casing into the hollow stem auger and allowing the well casing to rest on the bottom of the boring. Filter pack material (Lone Star No. 0/30) was poured from the surface into the annulus between the casing and hollow stem auger. As filter pack material was introduced into the borehole, the hollow stem augers were slowly withdrawn from the hole to allow the filter pack to fall in place between the well casing and native soil. The same procedure was followed in placing the bentonite plug and the volclay grout backfilling.

A.1.2 Deep Observation Well Installation

Observation Wells WCC-1D and WCC-3D were also constructed of threaded 4-inch diameter, Schedule 40 PVC casing and screen and set to a depth of approximately 140 feet. The wells were installed by first completing a sampling borehole using a wire line coring system which was used to continuous coring from 120 to 140 feet. This sampling system worked satisfactorily on WCC-3D, but had little After completing the sampling borehole, success in WCC-1D. the geologic formation was electrically logged (E-logged) by Geo-Hydro-Data, Inc. of Tehachapi, California. Next, the boring was reamed out to the total depth with a 10-inch diameter drill bit.

Once the boring was completed for the casing installation, the drilling mud was thinned to help break down the mud cake formed on the sidewalls of the boring. In both WCC-1D and WCC-3D the mud was thinned too much on the first attempt, and the boring sidewalls caved in and had to be redrilled. The well casing was placed down the 10-inch boring with centralizers installed at five locations along its length to keep it centered in the boring and not laying against the sidewalls. Filter pack sand was placed outside the screened interval of the casing using 1-1/2 inch diameter tremie pipe

and washing it down with tap water. A bentonite plug was set in the boring on top of the filter pack by pouring 1/4-inch bentonite pellets directly into the boring.

After allowing the bentonite pellets to settle into place the remainder of the annulus was backfilled by tremie pipe with volclay grout up to 8 feet below the surface. The top 8 feet of the annulus was backfilled with concrete.

A.1.3 Well Construction

The observation wells were constructed of 4-inch O.D. Schedule 40 PVC flush-threaded blank pipe, and screened with 0.010-inch slotted PVC screen. Adhesives were not used. The shallow wells were installed with 70 feet of blank casing and 30 feet of screen. The deep wells were installed with 120 feet of blank casing and 20 feet of screen. The well screen was filter packed by pouring or treming the filter material into the borehole from the surface. A filter pack material of Lone Star No. 0/30 sand was selected based on a field sieve analysis. Filter pack analysis and design procedures are discussed in Section C.4. The filter pack was placed from the well bottom to about 5 feet above the top of the well screen.

An approximately 5-foot thick bentonite pellet plug was placed on top of the filter pack, to minimize movement of fluids through the annular space. In addition, volclay bentonite grout was placed in the annulus from the top of the bentonite plug to approximately 8 feet below ground surface. A concrete plug was placed from the top of the volclay to the surface, to minimize seepage of surface fluids into the well and to provide strength to the backfill. The top of the well casings were completed 3 to 6 inches below grade with a waterproof locking well cap and protected with a moisture resistant steel traffic-rated

Christy box. Figure A.O is a schematic of the general observation well design. Appendix D presents the boring logs and graphic well construction details.

A.1.4 Soil Borings

Four soil borings, B-6 through B-9, to collect soil samples for chemical analysis and lithologic logging, were completed in the vicinity of the underground tank cluster, 15T through 18T. Each boring was completed to a depth of 65 feet.

Soil sampling as described in Section A.2 was completed in each boring just below the surface, and at 5-foot intervals to the total depth of each boring.

A.1.5 Soil Boring Backfill

Soil borings B-6 through B-9 were backfilled with silica sand and bentonite powder, at a ratio of 4 to 1. The top 1 to 2 feet of the borings were backfilled with asphalt.

A.2 SOIL SAMPLING

Soil samples were collected at 5-foot intervals in the soil borings and the shallow well borings to make observations regarding subsurface stratigraphic conditions and the presence of contamination, to perform field headspace tests, and to conduct laboratory analyses. Soil samples were collected using a modified California sampler that contained four brass tubes. The brass tubes were filled by driving the sampler 18 inches into undisturbed soil with the drop hammer. The number of blows required to drive the sampler 12 inches was recorded on the boring log and used to evaluate the density or consistency of the soil.

Additional soil sampling was completed for logging purposes only in the deep well borings beginning at 120 foot depth

and continuing to 140 feet. This sampling was performed using a wire line coring system which had a 2-inch diameter by 5-foot long split barrel sampler.

A.2.1 OVA Headspace Measurements

In general, one brass tube from each sample was extruded and placed into a sealable plastic bag. The bag was sealed and after approximately 5 to 10 minutes, an organic vapor analyzer (OVA) probe was inserted into the bag, and the vapor concentration in the headspace was measured and recorded on the boring log.

A.2.2 Soil Sample Preparation

One to two tubes from the soil sampler were prepared for laboratory analysis. The ends of the tubes were covered with aluminum foil, plastic end caps, and sealed with electrical tape. Soil samples were labeled with the following information:

- o Project number
- o Project name
- o Boring number
- o Sample number
- o Soil depth
- o Date
- o Sampler's initials

The soil samples were then sealed in Ziploc plastic bags and placed on ice in an ice chest. All of the soil samples were delivered to West Coast Analytical Service, Inc. in Santa Fe Springs, California for analysis. Chain-of-custody procedures, including the use of sample identification

labels and chain-of-custody forms were used for tracking the collection and shipment of soil samples. Copies of the chain-of-custody forms are presented in Appendix C.

A.2.3 Drilling Residuals

Drill cuttings from the soil borings and the shallow well borings were placed in Department of Transportation (DOT) Class 17H 55-gallon drums, and the contents of the drums were labeled using a permanent ink marker and spray-painted inventory number corresponding to an inventory list compiled by the field engineer. The drums were sealed and stored inside the facility hazardous waste storage area. Drilling mud and soil cuttings produced during installation of the two deep observation wells were pumped into separate roll-off bins next to the wells. Douglas Aircraft was advised of the locations and contents of the drums, and the need for proper management of the drill cuttings.

A.3 FIELD OBSERVATIONS

Observations by Woodward-Clyde Consultants' personnel during the drilling, sampling, and well installation operations were recorded on boring logs, as presented in Appendix B. These observations related to visual soil classifications, geologic and stratigraphic sample descriptions, observation well construction details, sampling efforts, OVA measurements, and other pertinent information.

A.4 FILTER PACK ANALYSIS

The selection of the proper filter pack material and well screen slot size is essential in collecting a sediment-free or low sediment content water sample. In all observation wells, soil samples were collected for sieve analysis. Filter pack design calculations were made based on the grain size distribution of these finest grained soil samples

collected within the designed screen interval and below the ground water table. For observation Wells WCC-1D, 3D, 7S, 8S, and 10S the depths of the samples analyzed were 123, 122, 75, 75, and 80 feet, respectively.

Soil sieve analyses for selection of well screen slot and filter pack size were conducted in the field. Each soil sample was heated with a portable propane stove to evaporate water from the soil. When the sample was dry, it was weighed on a scale to the nearest gram. The soil sample was then poured into the top of an eight sieve stack and shaken for approximately 5 minutes. The sieve sizes used in the analysis are shown in Figure A-1. The soil retained in each sieve was weighed and the cumulative percent retained was calculated for each sieve. The gradation analyses for the wells are illustrated in Figures A-1 through A-5.

A well design using a Lonestar No. 30 sand filter pack and a screen slot width of 0.01 inches (10 slot) was used for the five wells based on the gradation analyses. An ideal gradation of filter pack and screen slot width are plotted on Figures A-1 through A-5 along with the actual material These ideal sizes were calculated using the well design formulas presented in "Ground Water and Wells" by Driscoll, 1986." A commercially blended filter pack material was then selected that best matched the calculated filter pack curve, since custom made filter pack materials were not readily available. The grain size analysis curves for Wells -1D, -3D, -7S, -8S, and -10S were similar, and the soils were classified as silty sands to sandy silts. lithologic classification also correlated with the field descriptions of WCC--1D, -3D, -1S, -2S, -3S, and -4S.

A.5 WELL DEVELOPMENT

Observation Wells WCC-7S, -8S, -10S, -1D, and -3D were developed by Howard Pumps, Inc. of Barstow, California. Development occurred on 5 through 7 July 1989. During this development WCC-1D was damaged by breaking the bottom plug out of the well while bailing. Due to the formation conditions, sand surged up about 8 feet into the casing. This damage was repaired on 20 July 1989 by filling the well casing with drilling mud and then bailing the sand out of Then a 2-foot plug of bentonite clay was set in the bottom. the bottom of the well by pouring dehydrated bentonite pellets down the well and allowing them to hydrate. the pellets had hydrated, and formed a new bottom plug, the well was redeveloped.

of the wells were developed, first by bailing and surging, to remove the maximum amount of sediment possible. Next the wells were pumped by submersible pump to remove a large volume of water and assure the ground water around the well was formation water which had not been affected by the The two deep observation wells, WCC-1D well installation. and -3D, required a greater effort in their development because they were installed using mud rotary drilling. Table A-1 the development times, and the ground water volumes removed during development are presented. removed from each well was observed to become clearer during development and was completely clear upon completion of wells during removed from the Water development. development was stored in one large, steel, temporary "Baker" storage tank on site near Building No. 41, prior to treatment and discharge.

A.6 GROUND WATER SAMPLING

Two rounds of ground water sampling were completed from all ten of the observation wells. On 11, 12, 24, and 25 July 1989 the first round of sampling occurred (the two deep observation wells were sampled on the later two dates due to the damage of WCC-1D), and on 21 through 23 August 1989 the second round of sampling was completed.

Prior to beginning sampling procedures the static ground water level was measured in each well to the nearest one hundredth of a foot using an electronic well sounder. Then each well was purged, to remove possible stagnant water, by evacuating a minimum of three casing volumes of ground water. This was accomplished by bailing the well with a 3-1/2-inch-diamter PVC bailer attached to new polypropylene rope. The exception to this was the purging of WCA-1D and -3D on the first round of sampling only. These wells were purged by setting a submersible pump in the well and pumping a large volume of water for a final effort in development.

Throughout purging, and just prior to sampling the wells, pH, electrical conductivity or total dissolved solids, and temperature were measured and recorded for the evacuated ground water (Table A-2). These measurements were made to confirm that the wells were purged sufficiently. Sampling was done with a 1-1/2-inch-diameter Teflon bailer suspended from a monofilament line. Water samples were collected from each well in two 40 ml VOA vials.

In addition to water samples, bailer rinse samples were also collected in two 40 ml VOA vials for each well prior to collecting the water samples. The rinse samples were collected for possible analysis to confirm the sampling equipment was satisfactorily decontaminated.

The water samples, rinse samples, and two 40 ml VOA trip blanks for each sampling round, were packed on ice in a portable chest immediately after collection. Samples were delivered on the day following collection to West Coast Analytical Services. Chain-of-custody procedures, including the use of sample identification labels and chain-of-custody form, were used for tracking the collection and delivery of the samples. The chain-of-custody form is presented in Appendix C.

A.7 EQUIPMENT DECONTAMINATION PROCEDURES

Soil and ground water sampling equipment was decontaminated between sampling events using the following procedure:

- Brush-assisted water rinse to remove soil and mud (soil sampling only)
- 2. Water wash with Liquinox
- 3. Deionized water rinse to remove Liquinox
- 4. Second rinse with deionized water
- 5. Dry with paper towels (soil sampling only).

Prior to use at the site, the brass tubes used in the modified California sampler were cleaned in WCC's laboratory by washing sequentially in dilute sulfuric acid, Liquinox and water, and deionized water. The tubes were then air dried, and stored in sealable plastic bags prior to use at the site. New end caps were carried to the site in sealable plastic bags.

Drill augers or pipes, pumps, bailers, surge blocks, and cables were all steam cleaned prior to working on each boring or well. Steam cleaning was performed by the drilling companies on the facilities steam cleaning pad.

A.8 SLUG TESTING

Slug tests were conducted on observation Wells WCC-4S, -5S, -7S, -8S, -9S, -10S, -1D, and -3D on 19 July, 30 August, and 4 October 1989. Slug testing is a relatively quick and cost-effective method of measuring actual field hydraulic conductivity (K) values. Slug test derived hydraulic conductivity (K) values are not as accurate as aquifer pump test derived values, however, they are useful in preliminary calculations and in identifying large anomalies in hydraulic conductivity (K) values.

Slug tests only measure the average horizontal hydraulic conductivity (K) in the immediate vicinity of the well. In comparison a pump test stresses the aquifer at a greater radial distance, and as a result, a more representative hydraulic conductivity value (K) is obtained.

The slug tests were performed using the following equipment:

- o DL-120-MCP Envirolabs data logger with a 25 psi pressure transducer
- o One 3.25-inch diameter x 39-inch-long sand weig mandrel with a 1.4 gallon volume
- o Steel tripod and polyethylene rope

The weighted mandrel was used with the tripod and rope to simulate a slug of water being inserted and withdrawn from the well. The pressure transducer and data logger recorded the subsequent drawdown and recovery water level measurements of the well. One cycle of drawdown and recovery was performed on each observation well.

Data from the slug tests were evaluated using the Bouwer-Rice method (June 1976) for calculating hydraulic conductivity (K). Bouwer and Rice developed a procedure

that considers the effects from partially penetrating wells, the radius of the gravel pack, and the effective radius of influence of the test.

The Bouwer and Rice method entails solving the following equation:

$$K = \frac{r_c^2 \ln(R_e/R_w)}{2Lt} \ln (Y_o/Y_t)$$

Where:

K = hydraulic conductivity

 r_{\perp} = radius of well casing

 R_{\bullet} = effective radius of influence

 r_{m} = radius of the well boring

= length of screened interval or saturated thickness
if entire screen is not saturated

t = arbitrarily selected time from drawdown/time
 semi-log plot

y = initial drawdown at time t = 0, from drawdown/ time
 semi-log plot

The term R_{\circ}/r_{w} , which is a function of the radius over which the drawdown in the well is dissipated, was solved using the following equation:

$$\ln(R_{\bullet}/r_{w}) = \left[\frac{1.1}{\ln(H/r_{w})} + \frac{A + B \ln[(D-H)/r_{w}]}{L/r_{w}}\right]^{-1}$$

Where:

- H = distance from base of well to Static Water Level (SWL)
- = length of screen (or saturated thickness if entire screen is not saturated)
- D = thickness of aquifer
- A = constant based on value of L/r_w (see Figure A-22)
- B = constant based on value of L/r_w (see Figure A-22)

The test data were plotted on a semi-log diagram of drawdo (Y_t) versus time (t), drawdown being logarithmic (see Figures A-6 through A-21). The data should generate a straight line, although a flat "tail" is frequently observed. A drawdown (Y_t) is recorded for a selected time (t) within the straight line segment of the plot. Y_t and t are used in solving the equation for K.

The Bouwer and Rice method makes the following assumptions:

- 1. The aquifer is of constant thickness.
- 2. The soil is homogeneous and isotropic.
- 3. Flow is horizontal in the aquifer.

These assumptions are judged to be generally reasonable, recognizing that variations in aquifer thickness and anisotropic conditions will have an influence on calculate results.

A.9 PUMP TEST

The pumping well, WCC-4S, was selected because it is centrally located to the surrounding observation wells. In addition information collected during slug testing indicated the well would have a relatively high yield. Wells WCC-1S, -4S, -6S, -7S, -8S, -9S, and -1D served as observation wells.

Details of the well design for the existing ten shallow observation wells and the two deep observation wells are summarized in Table A-3. Depth of groundwater and distance to the pumping well is also included. Figure 2 shows the locations of the wells.

A 1-1/2 horsepower submersible pump was used to pump water from WCC-4S. The pump was switched on at 12:00 p.m. on 20 December 1989 and allowed to pump at 13.3 gpm for 16 hours and 30 minutes. At this rate the water level was nearly stable at a drawdown of approximately 6 feet.

The evacuated groundwater was stored in two 21,000-gallon transportable steel storage tanks. Storage requirements were estimated based on well development activities which indicated a maximum pumping rate of 4 to 5 gallons per minute. Assuming a pumping rate of up to 10 gallons per minute, Woodward-Clyde initially ordered one storage tank and figured if and when a second storage tank was required, it would be more than 24 hours after the pumping began. Because the pumping rate was greater than 10 gpm the second storage tank would have been needed before the tank rental company could respond to our request, if the 13.3 gpm pumping rate was sustained. Therefore, the flow rate was reduced to 8.5 gpm for 4-1/2 hours. After the second tank was delivered to the site, the flow rate of 13.3 was resumed and maintained for the remainder of 30 total hours of The overall time weighted pumping rate was "pumping".

approximately 12.6 gal/min. The pump was switched off at 6:00 p.m. on 21 December 1989. Measurements in the pumping well and all the monitoring wells continued until WCC-4S had recovered 99 percent of its maximum drawdown, two hours after the pump was shut off.

Water was pumped to the surface and approximately 400 feet horizontally to the storage tanks. The volume of water pumped out of WCC-4S was measured by an in-line totalizer. A total of approximately 28,000 gallons of groundwater was evacuated.

Five of the monitoring wells WCC-4S, -1S, -7S, -8S, and -1D had pressure transducers installed and connected to one of three Terra 8 data loggers to automatically measure and to groundwater. the depth record Woodward-Clyde measured the depth to groundwater on regular intervals in all of the observation wells except WCC-1S, -4S, and -1D. This task was performed using a Solonia In addition barometric pressure electric well sounder. readings were collected at regular intervals throughout the pump test using a Swift, Model 477 barometer.

The data from each well showing a discernable reaction were analyzed using one or more of the following techniques: plot, Cooper-Jacob (Residual Drawdown) Recovery Time-Drawdown plot, and/or Distance/Drawdown plot. summary of the results is previously presented in Table 2. earlier included obtained are values reference.

The nearly instantaneous initial drawdown and the subsequent constant drawdown with time, precluded any valid analyses of the pumping stage drawdown in the pumping well WCC-4S.

Nevertheless the recovery data for the pumping well which did appear valid was analyzed using a residual drawdown plotting technique.

This technique utilizes a semi-log plot of the residual drawdown (in feet) vs. the ratio of t/t' (see Figure A-23) where:

t = time since pumping started

t' = time since pumping stopped

The differential change in water level (Δs) is thus obtained from the plot and used in the equation:

$$K = \frac{264Q}{\Delta s \cdot b} \tag{1}$$

where:

 $K = \text{Hydraulic conductivity in gpd/ft}^2$

O = Pumping rate, in gpm

 Δs = Differential change in water level during one log cycle of time, in feet

b = The aquifer thickness (20.65 feet at WCC-4S)

Data for the observation wells WCC-1S, -6S, -7S, and -8S were analyzed using the Cooper-Jacob Time-Drawdown techniq as shown on Figures A-24 to A-27. A calculation of μ (from the well function, Driscoll 1986) showed the technique would be appropriate in general. A Distance/Drawdown plot shows the change in drawdown as a function of distance from the pumping well. The equations used and the calculations are shown with the plot. Analytical methods used are discussed

in the literature (Driscoll, 1986; Walton, 1987). The fundamental equation for hydraulic conductivity is identical to Equation (1) above. Other equations include:

$$T = Kb \tag{2}$$

and

$$S = \frac{0.3Tt_o}{r^2} \tag{3}$$

where:

T = Coefficient of transmissivity, in gpd/ft

 $K = \text{Hydraulic conductivity in gpd/ft}^2 \text{ (Equation [1])}$

b = Saturated thickness of the aquifer tested in feet

s = Storage coefficient (dimensionless)

t_o = Time, in days, of the intercept of the extrapolated drawdown curve at zero drawdown

T = Distance, in feet, from pumped well to the
 observation well where drawdown measurements were
 made

These plots allowed the calculation of both hydranic conductivity, and storage coefficient according to Equation (1) and (3). The method of plotting and the calculation are shown on Figure A-28.

TABLE A-1
WELL DEVELOPMENT SUMMARY
DOUGLAS AIRCRAFT C6 FACILITY

Well Mo.	Sand Bailer and Surge Block Time (min)	Sand Bailer Volume Removed (gallons)	Pumping Time (min)	Pumping Volume Removed (gallons)	Total Removed (gal)	Comments
WCC-6S	15	45	75	400	445	Water became completely clear.
wcc-7s	60	100	70	500	600	Water became completely clear.
wcc-8s	55	70	90	430	500	Water became completely clear.
WCC-9S	15	60	70	310	370	Water became completely clear.
WCC-10S	95	190	45	370	560	Water became completely clear.
WCC-1D	15	40	540	1,170	1,210	Well was damaged by bailing on 7 July 1989. Well was repaired on 20 July 1989. Well was developed by pumping only, following repair.
WCC-3D	320	500			500	Water became slightly cloudy. Well was only pumped just before sampling, see Table A-2.

TABLE A-2
WATER SAMPLING DATA
DOUGLAS AIRCRAFT C6 FACILITY

Well No.	Sample Date	Sample Interval (gal)	Electrical Conductivity EC (µmhos)	Total Dissolved Solids TDS (ppm)	РĦ	Temperature F°
wcc-1s	7/12/89	1 4 6 8 10		490 560 540 580 540	9.0 7.2 7.2 7.2 7.2	74.5 74.7 74.3 74.7 74.3
	8/23/89 ·	2 4 6 8 10	1220 1320 1340 1330 1330		7.3 7.3 7.3 7.3 7.3	71.1 71.0 71.0 70.6 70.6
wcc-2s	7/11/89	15 25 35 40		310 320 320 320 320	7.3 7.2 7.2 7.2	72.1 72.0 72.0 71.6
	8/22/89	10 20 30 40	760 760 760 760		7.2 7.3 7.3 7.3	70.4 70.4 70.2 70.2
wcc-3s	7/12/89	10 20 30 40	·	550 550 560 560	6.8 6.7 6.7 6.7	73.9 73.4 73.4 73.4
	8/23/89	10 20 30 40	1270 1270 1280 1280		6.8 6.8 6.9 6.9	70.5 69.9 70.2 70.2
WCC-4S	7/11/89	15 25 35 45		430 440 420 450	7.2 7.2 7.2 7.2	72.7 72.9 72.9 73.0
	8/23/89	10 20 30 40	960 990 1000 1005		7.2 7.2 7.2 7.2	69.8 69.8 69.2 69.4
WCC-5S	7/11/89	15 25 35 45		380 370 390 390	7.3 7.3 7.3 7.3	73.4 72.0 72.1 72.3
	8/22/89	15 25 35 45	885 900 900 900		7.2 7.3 7.3 7.3	69.1 69.1 69.2 69.4
WCC-6S	10/6/89	10 20 30 40	1,180 1,190 1,190 1,190		7.0 7.1 7.1 7.1	69.7 69.7 69.8 69.8

TABLE A-2 (continued)

Well No.	Sample Date	Sample Interval (gal)	Electrical Conductivity EC (µmhos)	Total Dissolved Solids TDS (ppm)	рн	Temperature F°
wcc-7s	7/11/89	15 25 35 45		540 520 510 510	7.2 7.1 7.2 7.2	72.5 72.5 72.7 72.5
	8/23/89	10 20 30 40	1180 1225 1220 1200		7.1 7.1 7.2 7.2	68.8 69.0 68.8 69.5
wcc-8s	7/11/89	15 25 35 45		390 390 380 380	7.3 7.2 7.2 7.2	72.5 72.7 72.5 72.7
	8/23/89	10 20 30 40	880 865 865 875		7.2 7.2 7.2 7.3	69.9 69.6 69.6 69.6
WCC-9S	10/6/89	15 25 35 45	1,110 1,070 1,050 1,000		7.1 7.2 7.2 7.2	69.1 69.2 69.0 69.1
wcc-10s	7/11/89	1 10 25 35 40 45		420 450 420 410 410 420	7.2 7.3 7.3 7.3 7.2	70.9 70.3 70.3 70.7 70.5 70.5
	8/22/89	10 20 30 40	1000 . 1010 1040 1040		7.2 7.2 7.3 7.3	69.1 69.1 68.9 68.8
WCC-1D	7/24/89	15 75 175 275 350	760 720 770 770 770 770		7.2 7.3 7.4 7.5 7.5	70.6 71.0 71.3 71.1 71.1
	8/21/89	20 40 60 80 100 120 135	760 756 730 730 720 720 720 720		7.4 7.4 7.5 7.5 7.4 7.4	70.1 69.6 69.7 69.2 69.7 69.8 69.8
WCC-3D	7/25/89	10 50 100 200 300 400 500	770 760 780 760 750 750 750		7.4 7.2 7.4 7.6 7.4 7.6 7.8	69.6 70.2 70.3 70.4 71.9 70.2 70.8
	8/21/89	20 40 60 80 100 120 140	710 715 715 720 720 715 715		7.3 7.4 7.4 7.4 7.4 7.4 7.4	69.5 69.2 69.3 69.0 69.3 69.8 69.1

BOE-C6-0092202

TABLE A-3
SUMMARY OF WELL CONSTRUCTION DETAILS

Well No.	Distance from WCC-4S* (feet)	Depth of Well (feet)	Screened Interval (feet)	Screen Slot Size (inches)	Diameter of Well Casing (inches)	Diameter of Filter Pack (inches)	Filter Pack Material
WCC-1S	115	88.5	78.5-88.5	0.01	2	10	No. 12 Silica sand
WCC-2S	675	90.5	70.5-90.5	0.01	4	10	No. 0/30 Lonestar sand
WCC-3S	220	89	69-89	0.01	4	10	No. 0/30 Lonestar sand
WCC-4S (pumping well)		90.5	70.5-90.5	0.01	4	10	No. 0/30 Lonestar sand
WCC-5S	250	91	61-91	0.01	4	10	No. 0/30 Lonestar sand
WCC-6S	200	91	60-90	0.01	4	. 11	No. 0/30 Monterey sand
WCC-7S	160	90	59.5-89.5	0.01	4	10	No. 0/30 Lonestar sand
WCC-8S	240	89.5	60-90	0.01	4	10	No. 0/30 Lonestar sand
WCC-9S	525	90	120-140	0.01	4	10	No. 0/30 Monterey sand
WCC-10S	2,020	90	60-90	0.01	4	10	No. 0/30 Lonestar sand
WCC-1D	100	140	120-140	0.01	4	10	No. 0/30 Lonestar sand
WCC-3D	250	140	120-140	0.01	4	10	No. 0/30 Lonestar sand

Measured from well locations plotted on site map provided by DAC.

APPENDIX B

BORING LOGS

BORING See Location Mad		ELEV	ATI DA	ON TUM	App	roxima	ately 5	1 Feet above MSL
DRILLING A & R Orlling, Inc. DRILLER M. R.	omero	DATE	TEI	5 6	5-13-	-89	DATE	HED 6-13-89
PRILLING SME 75 with 8-hon O.D., H.S.A.		DEP	PLE [H	TION (ft)	6	5.5	ROCK DEPTH	
TYPE OF SCREEN — SCREEN — PERFORATION — TYPE SIZE OF TYPE TIPE TIPE TO TYPE TIPE TIPE TIPE TIPE TIPE TIPE TIPE TI		DIAM				8	DIAME	TER OF _
SAND PACK OF SEA	HICKNESS US)					iry mixt	ture of S	Sand and Bentonite
No OF DIST G UNDIST 4 CORE	С	LOG	_	_	aesm	C n		KED BY
WATER FIRST _ COMPL _ 24 HRS					Reve		M	. Razmajas
DESCRIPTION 250 DESCRIPTION 25	WELL COMPLETION LOG		S	AΜ	PLE	S	le)	
DESCRIPTION Son				1	O. V. A.		Drilling Rate(Time)	REMARKS
	E E		บ	٦٤	- p	Back- Ground	======================================	
HITTI DOI		No.	Туре	Blow	Head Space	Back- Groun	\(\frac{1}{2}\)	
5- nith Asphalt concrete.		+						
Tubose, moist, blive prown, fine to medium I grained SAND to SILTY SAND (SP-SM).		Ŧ 1	\bigvee	7	100	10	0802	
		Ţ	Δ					
2 very loose, moist, olive prown, medium		Ī						
= + grained SAND (SP).		2	M	2	120	10	0815	
5 <u>-</u>		<u> </u>	\vdash					
\$\ \(\frac{1}{2}\)		‡						
‡	İ	‡						- .
		‡	Н					
+ Stiff to hard, moist, dark olive gray, 10 + CLAY (CH).		‡3	X	11	1000+	10	0819	
+ OLA (CIT):	į	‡						
<u> </u>		+						
		‡						
+ Medium dense, moist, dark yellowish brown, + SILTY fine grained SAND (SM), to SANDY SILT+		+	\square					
$\pm 15 \pm (\mathrm{ML})$.		+ 4	X	13	1000+	10	0824	
## Becomes discolored to dark olive gray, with trace of clay.		+						Strong cremical odor
<u> </u>		+						
+ Stiff to very stiff, moist, dark yellowish brown to plive brown, SILTY CLAY (CL).		Ŧ						
‡		Ŧ_	H	1.4		10	00,00	
20 +		‡5	Δ	11	10004	10	0900	
+		+						! !
-		+						
- Medium stiff to stiff, very moist, olive brown,		+						
+ SANDY SILT (ML).		+ 6	М	7	1000-	10	0910	
25—	ļ	+0	\triangle	′	1000-		0310	
‡		+						
<u> </u>		†						
- Loose, moist, light gray, CLAYEY fine grained		†						Encountered mixture
+ SAND (SC).		+ 7		5	1000-	10	0917	of silical sand and
30 +		+ '		ر ا	, 550		33.7	bentonite powder It is propably the
‡ ‡		+						backfill material
- Very soft, very moist, olive brown, SILTY CLAY		+						from adjacent Iboring.
Tto CLAYEY SILT (CL-ML).		†						-
1_1		<u>‡</u> 8	\bigvee	1	1000	10	0925	5
35+ +		工	V					<u>.</u>
Project: DOUGLAS AIRCRAFT COMPANY TORRANCE	T.O	G	() F	7	BOI	RIN	Ĵ	$\exists -\hat{\circ} \frac{\text{Fig}}{\text{B-2}}$
Project No.: 8941863J								ARD-CLYDE CONSULTANTS

BORING See Location Mod DRILLING A & P Drilling, inc. DR	W LED		ELEV		M Abb	roxima		1 Feet above MSL
DBILLING	ILLER M. R	omero	STAR	TED	6 - 13		DAT FINI	E shed 6-13-39
TYPE OF SCREEN	H.S.A.		DEPT	H (ft) "	6.5		TH (ft)
WELL CASING PERFORATION TYPE/SIZE OF SAND PACK -	TVDF/T	UICKNESS	BORI	VG (i	<u>n.)</u>	_8	WEL	METER OF -
Y's OF	3000	HICKNESS L(S)		ick fill	ed with	dry mb		Sand and Bentonie
SAMPLES DIST. O UNDIST. 1 WATER FIRST COMPL DEFTH (ft)	+	0	LOGG		y Glaesn	an		CKED BY
DEPTH (ft)	24 HRS	· _	ļ	Н.	Reye	S		M. Razmajes
. -	2]	NO		SAN	MPLE	S		
E DESCRIPTION	LITHOLOGIC	ETION					1 oz 1	· _
DESCRIPTION	101	WELL COMPLE LOG			Head- O Space P	, <u>E</u>		REMARKS
<u> </u>	17.1.1 1.0.0.1	E O	No.	Blow	ead	ack-	r a	
5 - non Asonalt concrete		801	Z F	<u> = 3</u>	= 5	= 3 3	122	
tery ts ff. moist, dark yellowish brown to			1	1,=	00	0.0		
± dark gray, SLAY (CH).	‡		- '	15	60	20	1142	:
Becomes mottled with iron oxide stain	s ‡	1 1	-		ļ			
\pm and plack stains of decomposed roots	+		2 1	23	80	20	11.40	
5 	Ť		-	122	30	20	1149	
mara, maist, dark yellowish brown, SILTY		1 ‡	-					
T CLAY (CL).	Ŧ		-					
<u> </u>	Ŧ		-					
0 +	Ţ	1 ‡	3 🗓	32	90	20	1155	
-	+		- " [/	172	90	20	1133	
Ŧ	‡		-					
Ŧ	‡		-					E
+	· ‡		-					
T	‡		4 🗸	39	90	20	11200	
5 - Hara, moist, dark yellowish brown, SANDY	+		- 7 1/2	109	30	20	1202	
÷SCT (ML)	‡	‡	-					
•	†		•					
••••••••••••••••••••••••••••••••••••••	‡							
D +	‡	‡	5 🛚	24	110	20	1200	
) 	+		- 7 🔼	24	110	20	1209	
-	+	†						
+	‡	‡						
-	. ‡		.					
; †	‡	‡	6 X	17	120	20	1015	
) 	+	+	۷ ۵		120	20	1215	
Ţ	†							
+	+							
+	†	‡				;		
+ +	‡	‡	7 🗸	27	1000	20	1004	_
- Medium dense, maist, alive brown, SILTY	+	+	· ′ 🔼	21	1000+	2U	1224	Strong chemical odor
fine grained SAND (SM).	†	+						- 550
+	†	+						
†	†	‡						
<u> </u>	‡	‡	8 🗸	21	1000+	20	1231	
· · · · · · · · · · · · · · · · · · ·			N	2+	0007	20	1231	
Project: DOUGLAS AIRCRAFT COMPANY TORRANCE		IOC	\cap T	ד ק	2A D	INC		□ ¬ Fig
Project No.: 8941863J		LOG	UI	1	\mathcal{M}	IJVII		B-4

ORING OCATION RILLING		ocation Map	R		mero	ELEV AND DATE						Feet above MSL
GENCY RILLING	A & R Drilling, I				mero	DATE STAR COMI	PLE:	TION	-14-		DATE FINISH ROCK	
QUIPMEN	IT CME /5 WITH	8-inch O.D., H.S	.A.			DEPT	(H)	(ft)	0.0	6.5	ROCK DEPTH DIAME	
YPE OF ELL CAS	ING -	SCREEN PERFORATION	· <u></u> -	_	<u> </u>	DIAM BORI	NG	(in.	<u> </u>	8	WELL (IN.) —
PE SIZE AND PAC	E OF CK				IICKNESS (S)				with D	ry Mixt		and and Bentonite
OF AMPLES	DIST	UNDIST. 14	COF	ŖΕ	0	LOGO			aesm	an	CHECK	
ATER EPTH (ft	FIRST _	COMPL _	24	HRS.	_	1			Reyes		M.	Razmajos
			່ ບ		Z	Ī			PLE			
) }			OLDO TOLICITI		WELL COMPLETION LOG	-					E E	•
DEPTH(rect	DESCRI	PTION	710		I I		-	F	J. V. A.	(ppm)	E E	REMARKS
<u> </u>	22001		Ē	507	E S		<u>a</u>	Blow	Head- Space	Back – Ground	Drilling Rate(Tim	
	· · · · · · · · · · · · · · · · · · ·		13		₹ 53	Š	Ē.	≝ತಿ∣	± ds	8 2	2 %	
	— non Asphalt concret	e over 6-inch base				‡						•
_ `_	raterial. Ty stiff, moist, very do	ork brown, SANDY	‡			‡ 1	XΓ	16	18	12	0745	
	AY (CL), with root hol		+			‡						
Ŧ			<u></u>			_						
= -	Becomes hard.		<u>+</u>			<u>†</u> 2	X	43	47	12	0758	
5 —'	nse, moist, yellowish s	Crown CLAYEY fine	\pm]	<u>†</u>	H	İ				
+ der Flara	nse, moist, yellowish t lined SAND (SC).	NOWII, OLATET IIII	Ī			<u> </u>						
+ -		SHITY CHAY (CL)	Ţ			Ŧ						* .
	ra, moist, dark brown, n root holes.	SILII CLAI (CL),	Ŧ			Ŧ						
+	· · · -		Ŧ			73	M	58	42	12	0806	
0 +			+		-	Ŧ -	\square		-	-		
+			‡			†						
<u>.</u> ∔ Mer	dium stiff, moist, oliv	e brown, SANDY	+			‡						
	T (ML).	,	+			‡						
-			†	,		+ 4	\square	11	45	12	0815	
5 -			+			+ "	\square	ı i	+ J	12	0013	
Į.			+			†						
-	ry st.ff, moist, dark b	rown SILTY CLAY (C				+						
	n nairiike root holes.		1			†						
*			+			+ _	H	21	20	12	0000	
:O +			+			‡ 5	M	21	20	12	0820	
+						Ŧ						
+ Ver	ry stiff, moist, dark b AY (CL) with hairlike	rown, SILIT	‡			‡						
± 557	an (OC) with Hublike	. 101 1	‡			‡						
+			‡		1	‡	Ц					
± 5±						16	X	15	42	1.2	0826	
.) 						‡	H					
+ ver	ry st.ff to hard, mois	t, dark olive brown,	Ţ			<u></u>						
† SIL	ÍY CLAY (CL), with c d nairlike root holes.	aicareous nodules	I			<u></u>						
+ 4	3 1000		Ŧ			\pm	L					
. + +			Ŧ			<u>I</u> 7	V	26	58	12	0833	
0 +			+			Ŧ	$\langle \rangle$	4				
+			+			Ŧ						
+ Ve	ry dense, moist, dark	olive brown, SILTY	+			Ŧ						
T fin	e grained SAND (SM),	with large calcareo	us			‡						
-	dutes		+		ļ	<u>‡</u> 8		86	68	12	0841	
35 🕂						\pm°	N	7		1	100-	<u>L</u>
Proje	ct: DOUGLAS AIRCRAFT	COMPANY TORRANCE			τ Ο 4	<u> </u>	\sim T		יסם	DINT/	\sim	8-8 F
-		863J			L()(ا ن	U	ť	BO I	RIN(J	B

eet)			၁		NOI	-	S	AN	ИF	LE	S		(e)		
	DESCRIPTION		D07		LETION				٥.١	7. A.	(ppm) 2	Jul J	REMAI	RKS
DEF 111(feet)			JTHOLOGIC	500	WELL COMPI LOG	<u>o</u>	уре	Blow Count	lead-	Space	Back- Ground mdd S	lrill	ta te		
+	very dense, moist, dark plive prown, SiLTY fine grained SAND (SM), with large	+	<u></u>	1	<u> </u>	-	_	10	-	01					
<u> </u>	calcareous nodules. Lens of hard, moist, dark olive brown, silty clay.	+++++			-	 - - -						-			
) + +	Silty sand becomes very moist, alive in color.	++++			_	9	X	39	1	25	12	0	848		
+++++++++++++++++++++++++++++++++++++++	- Very stiff to hard, moist, olive, SANDY CLAY -(CL), with iron oxide stains and calcareous nodules. (Strong HCL Reaction)	+++++++++++++++++++++++++++++++++++++++				110		20		70	1.7		05.7		
5-	Medium dense, moist, olive gray and yellowis	h,	•		-	F10	X	29	2	30	12		857		
1	brown mottled, SILTY fine grained SAND (SM) (SP), with Iron oxide staining, micaceous.)				-					10				
) 		+++++++++++++++++++++++++++++++++++++++	-		۔	† 11 † † †	X	24		100+	12)912		c .
5 -	Becomes dense, medium grained with abundant iron oxide, calcareous nodules, and shell fragments cemented.	+ + + + + + + + + + + + + + + + + + + +	· · -			12	2 X	35	5 10	000	12		0925		
	Very dense, moist, yellowish brown, medium grained SAND (SP).	+ + + + + + + + + + + + + + + + + + + +				† † † † † 1 -	3 >	85	5 4 (200-	12		0934		
) - - -	Hard, moist, olive, SANDY SILT (ML),	<u> </u>	-			+'` + +		7							
	(SILTSTONE?), micaceous. Dense, moist, yellowish brown, medium grain SAND (SP).	ed	- - -			+ + + + 1,	4	35	510	000	+ 12	2	0952		
5 - -	Dense, moist, olive, SILTY fine grained SAND (SM). Bottom of Boring at 66.5 feet.		- - -			+	+	1	+			-			
-		+	- - -			† † † †									
- O -	 	1				+									
-	 	1 1 1 1	-			+									
5-						+++++++++++++++++++++++++++++++++++++++								·	
	+	-				+									
Pr	oject: DOUGLAS AIRCRAFT COMPANY TORRANCE oject No.: 8941863J		CC)N	IT.	LO	G	() F	7	B01			B-3	F1g B-7

BORING See Location Map		ELEVAT	TON ATUM	App	roxima	ately 51	Feet above MSL
DRILLING A & R Driling, Inc. DRILLER M.	Romero	DATE STARTE	:D 6	5-14-	-89	DATE FINISH	ED 6-14-23
DRILLING CME 75 with 8-inch O.D., H.S.A.		COMPL DEPTH	(ft)	0.0	5.5	ROCK	(ft) -
TYPE OF SCREEN WELL CASING PERFORATION TYPE SIZE OF	- F/THICKNESS	BORING	(in.	<u>) </u>	8	WELL	
TYPE SIZE OF SAMPLES - TYPE OF	E/THICKNESS SEAUS) E ()	LOGGE			iry mixt		and and Bentanite ED BY
WATER FIRST COMPL 24	<u> </u>		. GI	aesm Reyes			Razmajos
DEPTH (ft)	Z			PLE			
	TIC			0. V. A.		g ime	
DESCRIPTION DESCRIPTION	-: E		[Hin .e (T	REMARKS
1 d d d d d d d d d d d d d d d d d d d	LOG WELL COMPLETION	No. Type	Blow	Head- Space	Back Ground	Drilling Kate(Tim	
aterial							
Medium stiff, saturated, dark brown, SiLTY	-	‡1 X	6	100	19	1107	
Becomes very stiff.	-	2 🗸	21	100	19	1112	
5 +	_		-				
Ī — Ī		-					- ·
‡ ‡		‡					
Becomes nard:	-	F 3 X	47	100	20	1120	
10 + 7	-	t 7 1		,00	20	1120	
l		<u> </u>					
1		‡					
Becomes more silty, very stiff.		‡.					
15 🕂	-	<u></u>	26	100	20	1124	
- Medium dense, moist, olive brown, SILTY fine		‡	ļ				
† grained SAND (SM).		Ξl					
įĮ		‡	1				
20 +	-	<u>†</u> 5 X	30	100	20	1130	
Stiff to very stiff, moist, olive brown, SANDY		Ŧ [
+ SILT (ML), micaceous.		†					
1 ‡		ΪL					
25	_	Į 6 🛚	16	130	20	1137	
<u> </u>	į.	‡	1				,
Very stiff, moist, dark alive brown, SILTY CLAY (CL), with iron exide spotting and root hales.		Ŧ					
‡		†					
+		Ī7K	25	130	20	1145	
30 + +		I K	7				
		+					
Medium dense, moist, olive brown, SILTY fine grained SAND (SM).		‡					
<u> </u>		18	21	125	20	1153	
35 + +		± ~ V	1,	1.20			
Project: DOUGLAS AIRCRAFT COMPANY TORRANCE	LOC	G 0	F	BOF	RINC	Ĵ	B-9 Fig. B-8
Project No: 8941863J					_		D-0

feet)		310	NOI		S	AN	/PLI	ES	je)	
DEPTH(teet)	DESCRIPTION	JTHOLOGIC LOG	L PLET				0. V. A.	(ppm)	ling e(Tin	REMARKS
DE	•	LOG LOG	WELL COMPLETION LOG	S _O	Type	Blow	Head- Space	Back- (Cround (mdd)	Dril Rate	
1	Medium dense, moist, blive brown, SiLTY fine grained SAND (SM).			ļ						
‡		<u>†</u>		 						
40-	Hard, moist, dark blive brown, SiLTY CLAY (CL), micaceous.		_	9		68	120	20	1202	
		_		 -						
+	Becomes very stiff, olive, with iron oxide spotting and decomposed roots.	_		‡. ‡						
45	- spotting and decomposed roots.	+	-	†10 †	M	25	130	20	1211	
+	Dense, moist, mottled, olive gray and yellowis	 		‡						
	brown, SILTY fine grained SAND to SAND (SW-SP), with Iron oxide staining.	<u> </u>		 						
50	<u>-</u>	 		†11 †	X	45°	340	20	1224	
+	Becomes less silty, grades to dense, mois yellowish brown, fine to medium grained			<u> </u>						Moderate Chemical
	SAND (SP), micaceous.	 		+						odor.
55	_	<u>†</u>		‡12 <u>‡</u> 12	X	42	900	20	1235	
		 		+				-		
+	• • •	 		+			100			
60	<u> </u>	<u> </u>		<u> </u>		46	490	20	1250	
1	Dense, damp to moist, olive gray, SILTY fine grained SAND (SM), very micaceous.	+		+						
	Hard, moist, olive, SANDY SILT (ML),	+ + +		+					. 7.0	
65-	(SILTSTONE?), micaceous.	<u>†</u>	-	<u>+</u> 14	†X	30	1000	+ 20	1303	
	-Bottom of Boring at 66.5 feet.	-		+-						
	- -	+		+						
70	<u>-</u> - -	<u> </u>		<u> </u>						
	- - -	+		+						
	- -	‡	,	+						
75-		‡		‡						
-	- - -	+		+						
Pro	oject: DOUGLAS AIRCRAFT COMPANY TORRANCE	+ CO3	TT	<u> </u>	\perp		\ F '		INC	a a Fig.
	oject No.: 8941863J	CON	IT.	LU	Մ —		7.			B-9 B-9 ARD-CLYDE CONSULTAN

BORING WCC-2 See Figure 2			ELE	VATION DATUS			casing © 50.59 ft.
DRILLING A & R Drilling, Inc. DRILLER	M. Smi	th		TE VRTED	10-2		DATE 10-28-87
DRILING CME 75, 10-inch H.S.A.			DEF	MPLETION		0.6	ROCK — DEPTH (ft)
	0 Slot		DIA	METER (OF S	10	DIAMETER OF 4 WELL (in.)
No OF DIST UNDIST. 5 CO	RE _	-	LOC	XED BY	'		CHECKED BY
MATER FIRST 73 COMPL 24	HRS. 71	.1	1	H	. Rey	es	B. Jacobs
DESCRIPTION	WELL	ı	NFO	SAMPLI DRMAT Conut Conut	10N 0.V.A.	Drilling Rate (Time)	REMARKS
Asphalt Medium stiff, very moist, dark yellowish brown, SANDY CLAY (CL). Becomes very dark grayish brown. Color change to yellowish brown. Becomes stiffer less moisture, SANDY CLAY (CL). Continued SANDY CLAY (CL). Less stiff, more moist. Continued SANDY CLAY (CL). Medium stiff, very moist, olive brown, SILTY CLAY.	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	No		西	(ppm)		
35-						133	·
Project: DOUGLAS AIRCRAFT COMPANY		L	ЭG	OF	BOR	ING	WCC-2S Fig. B-13
Project No.: 8741863D						wc	DODWARD-CLYDE CONSULTANTS

(continued) Stiff, moist, olive brown, SiLTY CLAY (CL) Dense, moist, olive brown, fine grained, SiLTY SAND (SM), with shells. 1	· DEPTH ((ect)	DESCRIPTION	WELL LOG	No.	Type	Blow	O.V.A. (ppm)	Drilling Rate (T.)	REMARKS	
SILTY SAND (SM), with shells. 1	40-	Stiff, moist, olive brown, SILTY CLAY (CL).						-		
Very dense, damp, strong brown, fine grained SAND (SP) to SILTY SAND (SM), iron oxide staining. Decomes SILTY SAND. 1423 Decomes SILTY SAND. 3 42 6 1433 70	45-	SILTY SAND (SM), with shells.		1	X	34	5	1342		
Very dense, damp, strong brown, fine grained SAND (SP) to SILTY SAND (SM). iron oxide staining. Becomes SILTY SAND. 65 Dense, maist, alive, fine grained SILTY SAND (SM), some iron oxide stains. 3 42 6 1433 70	50							1357		
Becomes SILTY SAND. 65 Dense, moist, alive, fine grained SILTY SAND (SM), some iron oxide stains. 70	55-	Very dense, damp, strong brown, fine grained SAND (SP) to SILTY SAND (SM).		2	X	60	5	1402	- .	
Dense, moist, olive, fine grained SILTY SAND (SM), some iron oxide stains. 70 Becomes wet. 75 Very dense, wet, olive brown, fine grained,	60-							1423		
Becomes wet. 75 Very dense, wet, olive brown, fine grained,	65-	T T Dense, moist, olive, fine grained SILTY SAND		3	X	42	6	1433		
75 Very dense, wet, olive brown, fine grained,	70-							1500	₩oton at 73	fest
	75-	Very dense, wet, olive brown, fine grained,		4		68	6	1512	_	1661
80								1544		
Project: DOUGLAS AIRCRAFT COMPANY Project No.: 8741863D CONT. LOG OF BORING WCC-2S	1	- Caraba Maria	CON	r. L	.00	3 0	F BOI	RING	W(1-2S)	Fig. B-14

Continues) (Continues) Very dense, wet, olive, fine grained to very fine grained SILTY SAND (SM), micoceous. State of the provided staining. Bottom of Boring at 90.5 feet. Bottom of Boring at 90.5 feet. Note: 48 gallons of sity water used to offset hydrogen sands during wall installation. Note: 48 gallons of sity water used to offset hydrogen sands during wall installation.									
Continued Cont	DEPTH (set)	DESCRIPTION		Š.	Type	Blow Count		Drilling Rate (T.)	REMARKS
Project: DOUGLAS AIRCRAFT COMPANY Project: No.: Project: DOUGLAS AIRCRAFT COMPANY Project: No.: Project: No.:		Very dense, wet, olive, fine grained to very fine grained SILTY SAND (SM), micaceous, with some clay interbedding and iron		5	X	50/ 3"	5	1600	
project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Fig. 8-12.	90		† I = 1	-	-	<u> </u>		-	
005- 110- 110- 110- 110- 110- 110- 110-	05	Battam of Boring at 90.5 feet.	+						water used to offset hydro static head of flowing sands during well
Project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Fig. B-11 B-741963D			+ + + + + + + + + + + + + + + + + + + +						
Project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Fig. B-19	100		+						• .
Project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Fig. B-1:	105	-	+						
Project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Project No.: Project No	110-		+ + + + + + + + + + + + + + + + + + + +						
Project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Project No.: 8741863D	115		+						
Project: DOUGLAS AIRCRAFT COMPANY CONT. LOG OF BORING WCC-2S Project No.: 8741863D E-19	120-		† • • • • • • • • • • • • • • • • • • •						
Project No.: P741863D	125-		+ + + + + + + + + + + + + + + + + + + +						
Project No.: 87418630	Pro	pject: DOUGLAS AIRCRAFT COMPANY	CON	Τı	0	 G	F BO	RING	WCC-2S Fig.
									B-10

ORING	ON ON			٧	VCC	-3		Se	e F								VATION DATE	M			Casing			
ENC ENC	IG	A	&	R	Dri	lling), l				MLLEF		И . :	Smit	h	B4	TE VRTED	10-		S-87	DATE FINISHED	10	0-26	-87
Ш					CN	1E 7	75,	10-	-inc	ch l	H.S	. A.				DE	MPLETIC	<u>) </u>	_ (92	ROCK DEPTH (fŧ)		
PΕ	OF CASING	4"	S	:h.	40	PV	С	SCREE	RATIC)N		.01	0 S	lot		DIA	METER	OF n.)	1	10	DIAMETE WELL (In	R OF	4	•
OF MPL			0:	ST.		_		UNDIS		6		_∞		_	•	LX	XXED 8		• • •		CHECKE		lacob	
TER	(ft)		FIF	RST	7	3.5		COMP	_	_		24	HRS.	74	.0	7	1	H. R	e ye	:5		D . (Jacob	
210	CO															5	AMPL	Ε						
= _													W			INF(ORMA	MOIT	_	(e)			* DICE	
() () ()					DES	CRI	PTI	NC					١.			1 1		0.V.		الج		KEM.	ARKS	
5~													"	og	ó	ĝ.	Blow	(ppr	_、	Drilling Rate (Time)				
													_		ģ	户	ಹರ	(PP	+					
	Asph Dame		rv ·	dark	arc	vish	bri	own,	fine	gro	ine	i	4	74		$ \ $			ļ	0846	Backgr			
	SILTY	SA	ΝĎ	(SM)) wi	th s	mai	gro	ıvel.				N	24							reading) =	+-0	ppm
-	Soft,	ver		oist.	 da	rk a	ray	to i	olack	SIL	TY.	_		7 4										
	CLAY	(CL	.).			-	-							2_4				ļ	l					
5-			mes	ies	s m	oist,	do	irk y	ellow	vish	bro	wn,		2					l					
	' ^s	stiff.											H	1					l					•
	!													1/										
-	-												\mathbb{N}	1										
	 			<u>ہ</u> د	1 TV	CLA	y /	CI /	Rec	000	· C / T	ore		1										
10-	† <u>`</u>	conti stiff.	nue no	u SI det	ecto	ble	odo	vej. F.	٥٥٥		اا جب,	. 💸 😅	\mathbb{N}											
:		•											17	1/										
																		1		ļ				
-	-												77	1										
													\square							1				
15-													11		1									
													1/3	1	1					0855	· ·			
													11		1		ŀ							
-	-							_					‡ //]						}			
	Dens	e, n	ois	t, ye	Nolle	rish	bro	۸n,	CLAY	ÆΥ	SAN	D t			1									
20-	SAN	OY C	LAY	′ (50	U-0	L).							13		1			İ						
20.														V.	1					0857	No od	or.		
	- ,	Grad	• •	hn 5	II TY	αΑ	ΔY	(CL)	Sti	ff. n	nois	t.	13		1	1]			Ì				
	,	dark	ye∥	lowis	sh b	rown	SI	LTY	CLA	Υ.		•									1			
	†												17		3						1			
o-	†								٠					V										
25.	†												71	1	1					090	5			
	†														1									
	‡												77		1						1	.		
	‡													1							No oc	or.		
_	<u> </u>												1/	1	1									
30.	‡												1/		4									
	<u> </u>												17		1						1			
	 	} Le	ns.	of v	olco	nic	ash						1/											
	 	>											1		7						1			
	ł												1/		1									
35	[T/		7					091	3			
	I												1/		1			1		1031	<u> </u>			
	<u> </u>												1/		1_		1							1 -
Pr	oject:	DOL	JGL	AS	Ali	RCR	AF	T C	OM	PAN	1Y				i	00	01	FВ	OR	RING	WCC	- 3	S	F
D ~.	oject	No.:				874	10	2 7 N							_	- •		_			OODWARD-C			В

DEPTH (feet)	DESCRIPTION	WELL	ò	Type	Blow	0.V.A. (ppm)	Drilling Rate (T.)	REMARKS
40	(continued) Stiff, moist, olive brown, SILTY CLAY (CL).						0921	
45	Lens of stiff, moist, alive, SANDY SILT (ML), micaceaus with decomposed pieces of roots.		1	X	25	30	0924	Earthy odor.
50	Clay becomes more stiff interpedded with						0937	·
55	Clay becomes more stiff, interbedded with lenses of dense, moist, yellowish brown, medium grained SILTY SAND (SM) with shells, partially cemented and crystalized calcite.		2	X	30	570	0945	Moderate chemical odor.
60							1005	
65	Dense, moist, yellowish brown to olive gray, very fine grained SILTY SAND to SAND (SM-SP), micaceous.		3	X	46	440	1015	Easier drilling. Moderate to strong
	Very stiff, very moist, olive brown, SANDY SILT							chemical odor. Very easy drilling.
70	(ML), micaceous with iron oxide stains.		4	X	35	+100	0 1035	Strong chemical odor.
75-	Becomes wet. Very dense, wet, olive brown fine grained SANI (SP) to SILTY SAND (SM).		5		59	+100	01047	▼ Water at 73.5 feet. 7 Strong chemical odor.
80-	Becomes medium grained.		6		N.F	t. +100	1112	
Į.	eject: DOUGLAS AIRCRAFT COMPANY eject No.: 87418630	CONT	. L	00	01	F BOF	RING	WCC-3S Fig.

DEPTH (leet)	DESCRIPTION	FOC METT	No.	Type	Blow	0.V.A. (ppm)	Drilling Rate (T.)	REMARKS
85	(continued) Very dense, saturated, olive brown, fine to medium grained SAND (SP-SM) with some silt.						1205	Moderate to strong chemical odor.
90							1545	
95	Battom of Boring at 92.0 feet.	+						Note: Used 59 gallons of city water to offset hydrostatic head of flowing sands during well installation.
100	• .	†						
105		† † †						
110		† † † †						
115	• •	* * * * * * * * * * * * * * * * * * *						
120	· · · · · · · · · · · · · · · · · · ·	† † † †						
125								
	ject: DOUGLAS AIRCRAFT COMPANY ject No.: 8741863D	CONT	. L	OG	OF	BOF	RING	WCC-3S Fig. B-18

MINC WCC-4 See Figure 2		LEVATION AND DATA	Тор		osing @ 49.69 ft.
TLING A & R Drilling, Inc. PRILER M. S	mith	DATE STARTED	10-27-		DATE 10-27-87
CME 75, 10-inch H.S.A.		COMPLETION DEPTH (A)	91.5	5	ROCK
PE OF 4" Sch. 40 PVC SCREEN .010 S	ot	DIAMETER (g 10		DIAMETER OF 4 WELL (in.)
OF DIST. UNDIST. 8 CORE	- }	LOCCED BY	,		CHECKED BY
ATER FIRST 75 COMPL _ 24 HRS.	71.6	n	i. Reyes		B. Jacobs
DESCRIPTION WE	-	SAMPLI IFORMAT	0.V.A. 6	Rate (Time)	REMARKS
Asphalt Moist, grayish brown, SILTY CLAY with some SAND (CL). 5 Moist, dark yellowish brown, SILTY CLAY (CL).	->			30 Be	ackground OVA rading = 4-6 ppm o odor.
Lense of dark greenish black valcanic(?) angular gravel.					
DOLLOU AO AIDODAST COMO ANIXI					WCC 46 Fig.
Project: DOUGLAS AIRCRAFT COMPANY	10	$C \cap F$	BORIN	\mathbf{c}	WCC-4S B-19

45 Very stiff, organic roots and plant detritus with arangish iron oxide staining. 1 X 18 8 1345 No odor.	
45 Very stiff, organic roots and plant detritus with arangish iron oxide staining. 1 18 8 1345 No odor.	
50	
55 2 23 8 1350 No odor.	•
60 Occasional fossiliferous gravel.	
Hard, light alive brown, fine SANDY SILT to SILTY fine SAND (SM).	
70-	
Becomes wet. Hard, damp, light olive brown, SILTY CLAY (CL) with iron axide staining. 4 X 42 7 Wa 75 feet	ter at
Very dense, light olive brown, fine grained SAND (SP) with little silt. 3 2 inch layer of CLAY (CL). 5 45 8 1530 No odo	
Project: DOUGLAS AIRCRAFT COMPANY Project No.: 8741863D CONT. LOG OF BORING WCC-	4S Fig. B-20

DEPTH (feet)	DESCRIPTION	WELL			Blow Count	0.V.A.	Drilling Rate (T.)	REMARKS
۵	(continued)	LOG	ž	ř	<u>ਛੋ</u> ડੈ	(ppm)	25€	
85	Very dense, wet, light olive brown, fine grained SAND (SP) with little silt.							-
90	Moist, light olive brown, SILTY CLAY (ML-CL).		6	X	N.R.	8	1700	No odor. Note: 45 gallons of city
+	Bottom of Boring at 91.5 feet.	+						water used to offset hydro static head of flowing sands during well instal— lation.
95-		†						
		†						
100	- -	‡						•
		+						
105	-	+ + + + + + + + + + + + + + + + + + + +			,			
110-	- - -	+						
115-		† † †						
120-		† † † †						
125		† + + + + + +						
	pject: DOUGLAS AIRCRAFT COMPANY pject No.: 8741863D	CON	<u> </u> Г. L	.00	G 0	F BOI	RING	WCC-4S Fig. B-21

BORING	C				WCC-	.5								ELI	EVATION D DATE	<u> </u>	48.2	22 Feet above MSL	
DRILLIN	NG		A a		Drilli		Inc.	C	RILLER		TE	XT			TE ARTED		4-87	DATE FINISHED 11-24-8	7
ORILLIN EQUIPE	Z				CME		10 -	inch	H.S	S. A.				Ç	MPLETIC		91	ROCK DEPTH (ft)	-
TYPE WELL	OF.	SNG 4"	P	VC.	SCH.				Lone		ar	#01	130	Di.	METER RING (in	OF.	10	DIAMETER OF 4	$\overline{}$
No OF SAMPL	<u> </u>	SING		NST.		. , 	UNDIST.		<u> </u>	CORE		π -		LO	COED B	7.)		CHECKED BY	
WATER DEPTH	<u>.E5</u>	·		IRST	7.	7	COMPL		<u> </u>	124 F	RS	70.3	• • /•	┧	8	. Jaco	bs	H. Reyes	}
DEPTH	<u> </u>	ft)				<u> </u>			<u> </u>	-		/0.3	1/.	4_		_			
_				•							_				SAMPL ORMA				
DEPTH ((est)					DESC	RIPT	ION:				WELL -			I		11011	Drilling Rate (Time)	REMARKS	
필위											LC	og			ا يد	0.V.A.	5		
_													ò	Type	Blow	(ppm)	# e		
	-	Moist. de	ork	olive	e brown	1. CI	AYEY SI	T 70	CI - MI	7-			Z	-	<u> </u>		108		
1	Ü	with little	e s	and.	J. D. C.	, 00		- ' '	VL 1410	` 	1	H					1400	Background_OVA	
. 1	t									Ė	7]	[₹]						reading = $3-4$ ppm	
+	-									£	7	[♥]							
1										- ₹	-	7							
_ ‡										7	,	24							
5-	-									+	7								
1	Ī									Ŧ	1	1:7							
‡										Į.	1								
1	١.			. –		. _ -		·		_ ‡	1								
Ŧ						. SIL	TY CLAY	(CL	_).	ł	λ	[1]							
1,1		with som	ne .	sand						Ŧ	1	1/1							
10										ť	1								
ł	-									1	1			11					
1										Ŧ		[1							
‡										+									
- +										Ľ		И		П					
٠										Į									
15	I	- Beco	me	s m	ore Sill	ty.				Ţ	1	17							
ł	. 1					•				+	1								
Ţ										¥	1								
‡	-									7	7						1		
+	•									ľ	1	1:1	}						
20										Į	1	+2	}				1		
20	-									ŧ	1								
Ŧ	•									r	1								
1										- ‡	1	1.1	Ì						
t	T	- Beco	me	s da	rk vell	owish	brown.			Ť]	П					
Ŧ	. 1				,					ľ			}				ŀ		
‡										Ţ,			1						
25	-									- f	1	1/	ł				1		
Ţ										Į	1		ł						
İ										- ‡	1		ĺ						
Ŧ	-	•								╁	4		1	1			1		
‡										ľ	1]			}	1		
t										Ţ,	1		ļ			1			
30	-									ŧ	1					[1	
‡										Į	4	1	Ì					}	
İ										ţ	1		i						
Ŧ	-									+	7		1				1		
- ‡										*]						
1										Ľ		V.				1			
35‡	-									Ŧ	1	1	ł						
İ										Ţ.	1	1/	ł			1			
+										ŀ	1	1/	1						
	· 	. 00:	10:	<u> </u>	AIDO	345	T COM) A A !	VT-	<u>L</u>	4		<u> </u>	1	L	1			
-	-			.A5	AIRC	TAF	T COM	-AN	1				LC)G	OF	BOR	ING	1 - 7.5	Fig.
Pro	je	ct No.:			87.	4186	3.7D							-		_ - • · ·	-	8	3-22
					07	+100	J JU										WO	DOWARD-CLYDE CONSULTANTS	

I			ı —				т	
DEPTH (feet)	DESCRIPTION	WELL LOG	No.	Type	Blow Count	0.V.A. (ppm)	Drilling Rate (T.)	REMARKS
40	Moist, dark yellowish brown, SILTY CLAY (CL). (continued) with some organic roots and iron oxide staining.						1445	
45	Dense, moist, dusky yellow to light olive brown, fine grained, SAND (SP) with little silt.		1	X	34	3		No odor.
55	Interbeds of Silty Sands and Clay.		2	X	37	_		. .
60			2		3/	5	1515	No odor.
65	Becomes very dense.		3	X	70	4	1550	No odor.
70 75 5	Becomes wet. Dense, wet, moderate plive brown, fine grained SILTY SAND (SM-ML).					-		∑ Water at 73 feet.
30			4	X 	35	3		No odor.
	et No.: 8741863D	CONT.		<u> </u>	OF	BORIN	1G	WCC-5S Fig.
- 0 100	8741863D							B-23/24

WOODWARD-CLYDE CONSULTANTS

Γ_				т			т			···
DEPTH ()	DESCRIPTION		WELL LOG	No.	Type	Blow	0.V.A. (ppm)	Drilling Rate (T.)	REMARK	S
85-	Dense, wet, moderate allve brown, fine g SILTY SAND (SM-ML).	rained								
90	-	-							No sample co Augers sandin	llected g—in.
	Bottom of Boring at 91 feet.				П				Note: 55 gallo city water was	ons of
95			,						to aid well ins	stall—
100		‡ ‡ ‡								• .
105		† † † † † † † † † † † † † † † † † † †						-		
110		+								
† †										
15		1								
‡		‡								
20		+ + + + + + + + + + + + + + + + + + + +								
25		+								
	ct: DOUGLAS AIRCRAFT COMPANY	C	 ON T.	LOC		OF	BORIN	L 1G	WCC-5S	Fig.
roje	ct No.: 8741863D					<u> </u>			WARD-CLYDE CONSULTA	B-25

ORING See Locatiza Map		ELEV	ATI DA'	ON TUM		48		eet MSL
	Romero	DAT			-8-	-89	DATE FINISI	HED 6-8-89
RILLING CME 75 with 10-inch O.D., H.S.A.		COM DEP	PLE'	TION	90	0.5	ROCK	
YPE OF SCREEN PERFORATION 0.01-	-inch	DIAN	ETE	R OF	7	10		TER OF
	/THICKNESS EAL(S)				Pelle	ts 5 f		ay grout 49.0 ft.
OP SI ONE OF SI		LOG	GED	BY		-		KED BY
ATER FIRST COMPL 24 H	RS				esm Reyes		M	. Razmajoo
EPTH (ft)	z							
DESCRIPTION DESCRIPTION	LOG WELL COMPLETION LOG		<i>ک</i> ا		PLE		ne)	
DESCRIPTION 3	Ē			2). V. A.	(ppm)	Drilling Rate(Tim	REMARKS
	ე ქჭე შ		و	¥ =	Head- Space	Back- Ground	it e	
	LOG WELL	Š	Type	Coun	Head- Space	Back- Groun	10 SS	
6-inch Asphalt concrete, over 8-inch base material.		_						
	1/1 1/2	1	M	31	1	10	0913	
Hard, moist, black, SANDY CLAY (CL).		_	H					
‡	131 13	†	Ц					
5 + +	1/1/2	2	X	45	1	10	0940	
<u> </u>	121 [2	‡	H					
<u> </u>	131 13	‡						-
‡		‡						
<u> </u>	124 12	‡		-				
o ‡	121 [2	13	X	36	1	10	0951	
<u> </u>	[3]	‡	H					
		‡						
Medim dense, moist, olive brown, SILTY fine grained SAND (SM).		‡						
Tyrumed Salve (Silv).		‡	Ы					
5.‡.		‡4	XI	14	3	10	1002	
‡ ‡		‡						
‡ ‡		‡						
Becomes dark yellowish brown, with trace		‡						
of clay, some decomposed roots.		‡						
0 ‡		‡5	X	25	2	10	1009	
‡ ‡	[2]	+	П					
‡		+						
	1/1 //	+						
Hard, moist, dark olive brown, fine grained SANDY CLAY (CL), with root holes.	[2] [3]	Ŧ _	H		_			
5 + + +		 6	M	31	2	10	1017	
‡		Ŧ						
Dense, moist, olive brown, SILTY fine grained		Ŧ						
SAND (SM).		Ŧ						
‡		╂_	H		_	10	1,055	
o‡	1/1 //	\pm'	X	41	2	10	1058	
‡		\pm						
-		+						
‡		\pm						
With root holes and small nodules of	[2]	+ -	\forall	70	2	10	1,105	
5 calcium carbonate (HCL Reaction).	[2]	8	\bigvee	32	2	10	1105	
Project: DOUGLAS AIRCRAFT COMPANY TORRANCE	т 🔿 С	٦.	~ т	٦ .	7 A T	TEST	~ \AIC	$C-7S = \frac{Fig}{8.2}$

<u> </u>		(1)		_	z	\top		2	ΔΝ	иРI	ES		
DEPTH(teet)	DECCDIDEION	THOLOGIC			LETION	-	T	7			(ppm)	ig ime)	DEMARKS
PT	DESCRIPTION	HOL	רח	=	COMPL	-		a l				1 :	REMARKS
		LIT	10G	¥ ₩	<u> </u>	3 2		Ž.	Blow	Head- Space	Back- Ground	Dr.i Ra	
-	Dense, moist, plive brown, SILTY fine grained SAND (SM), with root holes and CaCo, nodules	±			4	#							
: -	Medium dense, moist, dark brown to olive	† T		13	ļ	4							
10	brown, medium grained SAND (SP).	+			ŀ	4	9	\forall	25	3	10	1112	
40-	 - -	Ī			Ę	7	ľ						
	Dense, moist, olive brown, fine grained SAND	<u> </u>			ŀ	4							
-	to SILTY SAND (SP-SM).	+			ŀ	1				:			
45-	- - -	Į.			į	Ŧ 1	0	X	44	2	12	1123	
-		‡			ŀ	4							
-	Zone of hard, damp, light brown, calcareous material (sand and shell fragments)	1				1							
	- material (sand and shell liagments) 	+		1	<u> </u>	4				_			
50-	—Very stiff, moist, olive, CLAY (CL), mixed with shell fragments and calcareous nodules	-				4 1	1	Д	19	3	10	1134	
	(appears to be gouge zone).	İ				1							
	Dense, moist, olive, SILTY fine grained SAND	+				4							
	-(SM).	‡				4,	2	\bigvee	35	2	10	1148	
55-	_Hard, moist, olive, SANDY CLAY (CL), with some iron oxide staining.	İ				<u>†</u>	-	Δ	55	_		1770	
	- -	‡				‡							
	Dense, moist, olive brown, SILTY fine grained SAND to SAND (SM-SP).	‡				‡							
60-	SAND TO SAND (SM S.).	İ				Ī	3	X	38	1	10	1201	
00-	SAND	+				+							
	Dense, moist, olive gray, fine grained SAND (SP).	‡				+							
-	<u>-</u>	İ				Ì							
65-	- - -	Ī		ŀ	目	1	4	X	43	1	10	1214	
		‡			目	‡							
-	•	+				†							
-	Dense, very moist, olive, SILTY fine grained	Ŧ				Ŧ							
70-	SAND (SM), micaceous.	+			目	+	15	X	44	3	10	1228	3
-	<u>-</u> -	+			目	+							
	Becomes saturated.	Ī			目	Ī							
	<u>.</u>	‡				‡.	1 =	X	44	. 9	10	1300	
75-	<u>-</u>	+			目	+	·O		1	9		1,300	
-	- - -	Ŧ				Ī							
		<u> </u>							<u></u>				
1	Dject: Douglas AIRCRAFT COMPANY TORRANCE	CC	ΟN	Т	•	LC)(, J	0	F	BOR	RING	WCC-7S Fig.
Pro	oject No.: 8941863J										· · · · · · · · · · · · · · · · · · ·		B-30

	I							-=					<u>.</u>				_=				· ··	 •				 				000				 M			j		ı
Project: Project	-	+	+	ਤੰ + +	+-+	 	} + -	<u></u> 0	+	† +	+ -+-	; •	ก์ - + -∤	+	+ +-	+	100	+	+	+ + -	·- +-	95 + բ	∳+∵ ∵oru	+++ 13	 	8 	∳-+- 	1	• + -	85 •	+-+-	-1	• · · · •	80 · +	- '	 -+ 	DEF	TH ₍	feel)
et No.: 8941863J																						rĝers.	ng sand con	ambing added approximately 60 later to prevent	Bottom of Boring at 90.5 feet. Upon completion of drilling and		more suc, no shell	നുകൾ വളവുക നാകമിഗുന്ന to			ments.	Becomes very dense, medium			Sons becomes fine to medium	Shire Str. micaceous	. (DESCRIPTION	
CE COMPANY																							U	~ SO			fragments.	cocrse				m grained, with			lm grained.	fine grained .	,	NOL	
CONT	+			-+•	-+ +	+-+-	+++	+	+-+-+	+-+	-++	+-+	 -	++	-+ 	-++	-+	++	++	-+-+-	+++	-+-	-+-	+-+-	+++			ł r- ł	-+-+-	+	·· ·	+ +-++	+++	· f · t		†- + †	LITHO LOG WELL		HC
r. Log	-+-	+-+-	+-	 -	++	++	 	++	+++		-+-	++	 	 	++	-+-	++	++-	++	++	+ + +	++	-+-+		∤→ ∤		 	 	ШП 	++	 -	1111	 		[]]]] 	11111	COMI LOG No.	LET	
OF	-																										1			0))		.	Cii (I)		2746	Blow Count flead	0. V	SAMI
B0			-								· Auditor																		•		l 		- * *		190 • •		Space Back- Groun	144	AMPLES
72							, p		,												(O 4)				t.			• • • • • • • • • • • • • • • • • • • •	 				 Gi			Groun Drill Rate	ing	1e)
ARD-CLIDE																										4							-		3 0 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1			REMARKS	
∜ Β•3 3																																			;	1 1/1		\widetilde{O}	

BORING LOCATION	See Lo	cation Map			· · · · · · · · · · · · · · · · · · ·	ELEV	ATI DA	ON TUM		50).56 fe	et MSL	
DRILLING A &	R Driling, In	· .	DRILLER	1VI. 11C	mero	DATE			-12-	-89	DATE FINISH	ED 6-12	-39
DRILLING CME	75-with 8 d	and 10-incl	n 0.D.	,H.S.A.		COM DEP	TH ((ft)		0.0	ROCK DEPTH		
	ch. 40 PVC	SCREEN PERFORATIO		0.01 - in	ch	DIAM BORI				10	DIAMET WELL (1
TYPE/SIZE OF SAND PACK		No. 0/30		TYPE/THOF SEAL	IICKNESS (S)	8				ts 5 f		ay grout 49	5 ft.
No OF SAMPLES	DIST. O	UNDIST.	17	CORE	0	LOGG			aesm	an	CHECK M	Razmai:	10
WATER DEPTH (ft)	FIRST _	COMPL		24 HRS.	-				Reyes				
DEPTH(red)				210	ETION		S	AM	PLE	S	ne)		:
Ē r	ESCRI	PTION	I	070				ŀ	0. V. A.	(ppm)	ng (Tun	REMAF	RKS
EP.		1 1101	•	LITHOLOGIC LOG	WELL COMP		e e	Blow	Head- Space	Back- Ground	Drilling Rate(Tm		
				1 2 2	× 5 2	2 Z	ځ	<u> </u>	S E	å 5			
Base mat	Aspinalt concrete erial, medium d	ense, moist, y	yellowish	‡		‡ .	Н				0750		
brown,	CLAYEY SAND (SC), decompo	sed /	Ŧ		Į 1	\mathbb{N}	12	0	11	0800		
+ \ <u>qranite.</u> Stiff, very	moist, very da	rk gray, SAND	ΣΥ	+		†							
CLAY (CL)	moist, dark vella	owish brown,	SANDY	‡		† 2	М	55	13	11	0810		
CLAY	O CLAYEY fine	grained SAND	(CL-	Ī		I	H					•	
+ SC).				‡		+							- .
1		. CLAY	(CL)	‡		+							
Hard, moi	st, olive brown,	SILIT CLAT	(CL).	Ŧ		- 3	\forall	82	30	11	0819		:
10 +				+		十 ³	Й	02	30	11	0013		:
 				‡		#							4
Medium d	ense, moist, oli	ve brown, SIL	TY fine	†		Ī							•
grained S	AND (SM).			Ī		${\mathbb T}$							1
15				‡		4	X	20	41	11	0823		
13 ‡				‡		4							
+	to hard, moist	olive brown	SILTY	$\dot{+}$		7							
CLAY (CL), with CaCo, v	einlets.	5,5,	-	121 1	4			į.				
 				‡		7 5	∇	26	46	11	0830		
20 +				+	[3]	才"		-					
† †				Ī		I							•
†				<u></u>	131	4							
<u> </u>				‡		4	\vdash		_				
25 Dense, m	oist, olive, SILT	Y fine grained		‡		往6	X	33	24	11	0839		
SAND (SA	I-ML), with son ke root holes.	ne iron oxide	stainin	9 ‡	121	往—							
Į Į				+		#							
	ist, dark olive b caliche veinlet		CLAY	‡	131	往.							
1 1		•		Ŧ		注7	· 🛚	32	21	11	0846		
30				Ī	[3]	4		4					
Dense. m	oist, olive brow	n, fine graine	d SAND	+	121	4							
to SILTY	SAND (SP-SM).	-		‡	131	7							
† ‡				<u> </u>	121	狂。	, 	31	43	10	0855		
35 - Becom	nes more silty.	grades to (S)	M)	+	121	注 ⁸	V	1	1 +3		10000	<u> </u>	
Project: DO	JGLAS AIRCRAFT	COMPANY TORR	ANCE		ΙO	C	\bigcap	F	ŘO¹	RIN	G WC	00-88	Fig
Project No	o.: 8941	863J				 -	_	т		r e I I A ,		ARD-CLYDE (
											#UUD#	AND CLIDS	

	TION		Se	e Lo	catio	п Мар					EL	EVA	TIO	N UM		5		eet MSL		
DRIL	LING A	& R	Drilin	ng, ir	nc.		DRILLER	R М.	Ro	mero	PA S1	TE	ED	6	-7-	-89	DATE FINISI	HED 6-	7-89	
DRIL		СМЕ	75 v	vith 8	3-inc	h 0.D.	, H.S.	Α.			CO	MP PTI	ET	ON t)	9	0.8	ROCK DEPTH		_	
TYPE		PVC	Sch.	40		EEN FORATIO	N (0.01	-in	ch	DI.		TEF	OF		10		TER OF	1	
TYPE	SIZE OF					0/30		TYP	E/TH	IICKNES (S)	S				Pel	lets 5		olay grout	49 %	
No C	F		IST.	0		IDÍST.	18	COR	E	0	LO	GG	ED	BY			CHEC	KED BY		
WATE		F	TRST	_	cc	MPL	-	24	HRS.						esm leye		М	. Razm	3]30	
DEPT'H(feet)								25		ETION		5	SA		PLE		је)			
Ĭ.		DE	720	DI	рΤ	ION	Ī	LITHOLOGIC		텯			T	0	V. A.	Back- Ground M	ng Tim	RFM	ARKS	
FF.		DE		111	1 1	101	1	운	לז	LL MPLI	-			뒽.	i e	k	E E	101111	·····	
DE									TOG	WELL		0 2	Blow	Count	Spa	Back	Dr Ra			
				ait cor	ncrete,	over 9	-inch	+		71	7	Ť	T		1	6	0954			
-	base	mater	rat.	eatur	rated	black, S	SANDY	†		[2]	7				·					
-						lark yell		Ŧ		[2] [#									
-	bro		very st	iir, m	oist, c	iark yeii	OWISH	‡			#									
-	+	-						+		11	#	1 K	/2	4	1	7	1000			
5 -								+		121 1	才	\angle	1,		,	'				
-	-							‡		[:1]	才.								-	
-	Medium	dens	e, mois	st, oliv	ve bro	wn, SIL1	TY fine	‡		}	#									
-	grained	SAND	(SM),	with	trace	of clay.		‡			#					}				
-								+		/1	才.	2 K	7 1	7	1	7	1007			
) –	-							+		1/1	壮'	~ Z	И,	7	,	'	1007			
-	F							+		E1 E	4									
-	L No	çlay.						\pm		[3] [4									
-	[• · · · ·	J				•		-		<u> </u>	7	•								
-	_				,			† .			汗	_ k	┧.		_					
-	_							‡			4	3)	χ]2	5	2	7	1013			
_	<u>-</u>							‡		/1	4	ſ	1							
	<u> </u>							‡		121 1	4									
_	_							‡		121 E	4									
	<u> </u>							‡		[3] [4	Ļ								
- C								1		[3]	1	4	χz	21	0	6	1017			
, -				moist,	dark	yellowis	h brow	nş ·		13	注	K	4							
-	SANDY	CLAY	(CL).					1		:1	1									
-								I		121 1	1									
-	F						•	Ŧ		121 1	狂		_							
			large n			alcium		‡		121 1	往	5	$\sqrt{1}$	51	0	6	1024			
5 -	- carl	bonate	(HCL	React	ion).			+		[3]	往	Ĭ	Δ)`		J					
-	 							†		<u> [3]</u> {	1									
-	-							+		133	#									
-	Dense	moist	olive	brown	SILT	Y fine	argined	+		1/1	壮					-				
-	SAND		, טוועפ	J. U#1	٠, ٥٠٠)		₃ u	+		1:1	壮	ا ج	√.	,	1		1071			
) _	-							\pm		1/1	升	6	Δ,	36	1	6	1031			
-	-							Ŧ		[4]	4									
-	<u> </u>							‡		131	往									
-								+		[3]	沣							İ		
-	Dense, to SIL				n, fine	grained	JAND	‡			才	k								
5 -		. , 371	(31"	JI+1).				‡		1:1	4	7	X	32	2	6	1038			
	oject:	2000	S AIRCE	PAFT ^	OMPAN	Y TORRA	NCE			<u> </u>		¥	<u> </u>					-	_ F:	
	-			39418		· · · OKKKA				LO	G	C)F	F	301	RIN(G WC	C-1	S B-3	
	oject	INO) J 🏲 ; C	$U \cup U$		1										WOODW			

BORII	NG See Location Map					ELE	VATI DA	ON TUM			50).45 F	eet MSL	
DRILL AGEN	ING Beylik Drilling, Inc. DRIL		D.	J	ones	DAT	E RTEI	6	5-2			DATE FINISI	HED 6-30	-89
	MENT HIGH TOTAL	у				DEP	IPLE TH METE	TION (ft)		14		ROCK	H (ft)	-
WELL	CASING PVC SCH. 40 IPERFORATION	().01			BOR	ING	(in.)		0	WELL	(IN.)	4
SAND No O	VSIZE OF Lonestar No. 0/30 FLES DIST. 4 UNDIST. 0		OF S	ÉÀL	IICKNESS (S)	LOG	GED	BY	•		s 5		clay grout 10	07 ft.
SAMP WATE DEPT	R FIRST COMPL		24 H			1	Р	H. Gl	Rey aes	es ma	ın		I. Razmajo	00
1 1	H (ft)		ပ		Z				PL					
DEPTH(feet)	DUCCDIDUION		LITHOLOGIC		ETIC	·	П				ppm)	g ime	DENGLE	21.5
PT.	DESCRIPTION		HOH	r 14	P. L	}			,			llin ce (1	REMAR	KKS
E			LIT	LOG	WELL COMPLETION LOG	No.	Type	Hlow	Head	Space	Back- Ground	Drilling Rate(Time)		
	6-inch Asphait concrete over 6-inch bas material.	se .			, 01 14	+						1235		
	Dark yellowish brown, CLAYEY fine grained	- -	+		0 0	‡								
1 1	. SAND (SC), with small diameter gravel.	-	-		7	-								
_ +	<u>.</u>	-	+	•		†								
5 -	_	_	Ţ ′			Ī						1303		
	-	-	‡			†								-
1 1	- 	-	‡			-								
	Dark yeliowish brown, SILTY CLAY (CL), with	h	+			†								
10	nfine grained sand.	-	Ī			Ī								
	- -		‡			‡								
		-	‡			‡								
1	· •	-	+			+								
15	- :	-	+			+						1308		
			Ī			I								
	<u>.</u>	-	+			‡								
1 1	- -		Ŧ			+								
20	-	-	+			+								
†	-	•	Ī			Ī								
]	· •		‡			‡								
	-		‡			‡							Stopped	-
25	_	-	+			1	'					1313	to repair	urni,
			†			+							Resumed	l drillin
‡	•	•	Ī			\exists								
	-		+			+								
30	-	-	‡			+								
			+			+								
‡	-	_	İ		[3] E									
	Dark yellowish brown, SILTY fine grained So-(SM).	AND	1			Ţ								
35	- (JW).	-	+			#								
<u></u>	oject: Douglas Aircraft Company Torrance				τ	7	ΔT		DC	\ D	TNI	¬ \Λ/(Fig
	oject No.: 8840863J				LO(J	U	·	D(スト	11/(<i>σ</i> , , , , , , , , , , , , , , , , , , ,	00-10	B-41

	יים מים	(n		DEPTH(feet)
	Project: Douglas aircraft company torrance Project No.: 8941863J	nitial ariling and sampling was completed on 23 and 26 June 1989. Boring was enlarged and well was constructed on 27 June 1989.	SALO SWILL TO THE STORM	DESCRIPTION
	CONT.	<u></u>		LITHOLOGIC LOG WELL COMPLETION
	LOG	 	 	I.OG No Type
	OF			Blow Count Head OV A Space A Back - P
WOODW	BORING		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Back - P (V) Ground B (V) Drilling Rate(Time)
WOODWARD-CLYDE CONSTITANT	B-48		1	REMARKS

APPENDIX C ANALYTICAL RESULTS

(2L-ABC/C6GW3-AA)

June 28, 1989

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Drive Santa Ana, CA 92705

Attn:

Dr. Alistaire Callender

JOB NO.

12944

THAL TURE OFENIERS

LABORATORY REPORT

Samples Received: Fifty-five (55) soils

Date Received: 6-13-89

Date Released for Analysis: 6-20-89

Purchase Order No: Proj#: 8941863J-Task 1/Douglas Aircraft Co.

The samples were analyzed as follows:

Samples Analyzed

<u>Analysis</u>

<u>Results</u>

Thirteen (13) soils

Halogenated and Aromatic

Volatile Organics by EPA 8010/8020

Data Sheets

Page 1 of 1

Shelley Stuart

Senior Chemist

D.J. Northington, Ph.D. Technical Director

9840 Alburtis Avenue • Santa Fe Springs, California 90670 • 213/948-2225

Client: WOODWARD-CLYDE CONSULTANTS

Job No:

12944

Date Analyzed: 25-Jun-89

Analysis: EPA 601/602 (8010/8020)

Sample: B-6-3-3 /2

Matrix: Soil

Samp Amt: 1 gm Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.005
Bromomethane	ND	0.005
Vinyl Chloride	ND	0.003
Chloroethane	ND	0.005
Methylene Chloride	0.053	0.025
1,1-Dichloroethylene	ND	0.003
1,1-Dichloroethane	0.011	0.002
trans-1,2-Dichloroethylene	ND	0.002
Trichlorofluoromethane	ND	0.002
Chloroform	ND .	0.002
1,2-Dichloroethane	ND	0.002
1,1,1-Trichloroethane	0.016	0.002
Carbon Tetrachloride	ND	0.002
Bromodichloromethane	ND	0.002
1,1,2,2-Tetrachloroethane	ND	0.002
1,2-Dichloropropane	ND	0.002
trans-1,3-Dichloropropylene	ND	0.002
Trichloroethylene	ND	0.002
Dibromochloromethane	ND	0.002
1,1,2-Trichloroethane	ND	0.002
Benzene	ND	0.001
cis-1,3-Dichloropropylene	ND	0.002
2-Chloroethyl Vinyl Ether	ND	0.004
Bromoform	ND	0.003
Tetrachloroethylene	ND	0.002
Toluene	0.064	0.001
Chlorobenzene	ND	0.004
Ethylbenzene	0.001	0.001
Total Xylenes	0.009	0.001
1,3-Dichlorobenzene	ND	0.001
1,4-Dichlorobenzene	ND	0.001
1,2-Dichlorobenzene	ND	0.001

Client: WOODWARD-CLYDE CONSULTANTS

12944

Date

Job No:

Analyzed: 23-Jun-89 Analysis: EPA 601/602 (8010/8020)

Sample: B-6-5-3

Soil Matrix:

Samp Amt: Dil Fact: 1 gm 500

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	2.5
Bromomethane	ND	2.5
Vinyl Chloride	ND	1.5
Chloroethane	ND	2.5
Methylene Chloride	ND	13
1,1-Dichloroethylene	ND	1.5
1,1-Dichloroethane	ND	1
trans-1,2-Dichloroethylene	ND	0.8
Trichlorofluoromethane	ND	1
Chloroform	ND	0.8
1,2-Dichloroethane	ND	1 _
1,1,1-Trichloroethane	12	0.8
Carbon Tetrachloride	ND	0.8
Bromodichloromethane	ND	0.8
1,1,2,2-Tetrachloroethane	ND	0.8
1,2-Dichloropropane	ND	0.8
trans-1,3-Dichloropropylene	ND	0.8
Trichloroethylene	45	0.8
Dibromochloromethane	ND	0.8
1,1,2-Trichloroethane	ND	0.8
Benzene	ND	0.5
cis-1,3-Dichloropropylene	ND	0.8
2-Chloroethyl Vinyl Ether	ND	2
Bromoform	ND	1.3
Tetrachloroethylene	ND	0.8
Toluene	1900	0.5
Chlorobenzene	ND	1.6
Ethylbenzene	51	0.5
Total Xylenes	390	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-6-7-3

Job No: 12944

Date Matrix: Soil

Analyzed: 23-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 5000

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	25
Bromomethane	ND	25
Vinyl Chloride	ND	15
Chloroethane	ND	25
Methylene Chloride	ND	125
1,1-Dichloroethylene	ND	15
1,1-Dichloroethane	ND	10
trans-1,2-Dichloro hylene	ND	7.5
Trichlorofluoromethane	ND	10
Chloroform	ND	7.5
1,2-Dichloroethane	ND	10
1,1,1-Trichloroethane	ND	7.5
Carbon Tetrachloride	ND	7.5
Bromodichloromethane	ND	7.5
1,1,2,2-Tetrachloroethane	ND	7.5
1,2-Dichloropropane	, ND	7.5
trans-1,3-Dichloropropylene	ND	7.5
Trichloroethylene	ND	7.5
Dibromochloromethane	ND	7.5
1,1,2-Trichloroethane	ND	7.5
Benzene	ND	5
cis-1,3-Dichloropropylene	ND	7.5
2-Chloroethyl Vinyl Ether	ND	20
Bromoform	ND	12.5
Tetrachloroethylene	ND	7.5
Toluene	48	5
Chlorobenzene	ND	25
Ethylbenzene	ND	5
Total Xylenes	21	5
1,3-Dichlorobenzene	ND	5 5 5 5
1,4-Dichlorobenzene	ND	5
1,2-Dichlorobenzene	ND	5

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-6-7-4

Job No: 12944

Date Matrix: Soil

Analyzed: 23-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1000

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	5
Bromomethane	ND	5
Vinyl Chloride	ND	- 3
Chloroethane	ND	· 5
Methylene Chloride	ND	25
1,1-Dichloroethylene	ND	3
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	2
Chloroform	ND	1.5
1,2-Dichloroethane	ND	2 -
1,1,1-Trichloroethane	ND	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	ND	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	ND	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	19	1
Chlorobenzene	ND	5
Ethylbenzene	ND	1
Total Xylenes	6	1
1,3-Dichlorobenzene	ND	1
1,4-Dichlorobenzene	ND	ī
1,2-Dichlorobenzene	ND	1
_,		. -

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-6-9-3

Job No: 12944

Date Matrix: Soil

Analyzed: 23-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1000

	Concentration	Detection
Compound	mg/Kg	Limits
Chloromethane	ND ·	5
Bromomethane	ND	5
Vinyl Chloride	ND	- 3
Chloroethane	ND	5
Methylene Chloride	ND	25
1,1-Dichloroethylene	ND	5
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	2
Chloroform	ND	1.5
1,2-Dichloroethane	ND	2
1,1,1-Trichloroethane	59	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	23	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	ND	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	320	1
Chlorobenzene	ND	5
Ethylbenzene	2.9	1
Total Xylenes	21	1
1,3-Dichlorobenzene	ND	1 1 1
1,4-Dichlorobenzene	ND	1
1,2-Dichlorobenzene	ND	1

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-6-11-3

Job No: 12944

Date Matrix: Soil

Analyzed: 23-Jun-89 Samp Amt: 0.1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	0.06	0.03
1,1-Dichloroethane	0.09	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	0.53	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	0.035	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.31	0.01
Chlorobenzene	ND	0.04
Ethylbenzene	ND	0.01
Total Xylenes	0.03	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-6-13-3

Job No: 12944

Date Matrix: Soil

Analyzed: 23-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1000

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	5
Bromomethane	ND	5
Vinyl Chloride	ND	3
Chloroethane	ND	5
Methylene Chloride	ND	25
1,1-Dichloroethylene	ND	3
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	. 2
Chloroform	ND	1.5
1,2-Dichloroethane	ND.	2
1,1,1-Trichloroethane	7.7	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	ND	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	ND	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	. 4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	9.9	1
Chlorobenzene	ND	4
Ethylbenzene	ND	1
Total Xylenes	2.9	4 1 1 1 1
1,3-Dichlorobenzene	ND	1
1,4-Dichlorobenzene	ND	1
1,2-Dichlorobenzene	ND	1

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-7-7-3

Job No: 12944

Date Matrix: Soil

Analyzed: 25-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 40

Compound	Concentration mg/Kg	Detection Limits
Compound Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride 1,1-Dichloroethylene 1,1-Dichloroethane trans-1,2-Dichloroethylene Trichlorofluoromethane Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,1,2,2-Tetrachloroethane 1,2-Dichloropropane trans-1,3-Dichloropropylene	mg/Kg	
Trichloroethylene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropylene 2-Chloroethyl Vinyl Ether Bromoform Tetrachloroethylene Toluene Chlorobenzene Ethylbenzene Total Xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	0.09 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.06 0.06 0.06 0.04 0.06 0.2 0.1 0.06 0.04 0.33 0.04 0.04 0.08 0.08

ND-Not Detected. The limit of detection is reported above.

BOE-C6-0092260

Client: WOODWARD CLYDE CONSULTANTS Sample: B-7-8-3

Job No: 12944

Date Matrix: Soil

Analyzed: 25-June-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1000

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	5
Bromomethane	ND	5
Vinyl Chloride	ND.	3
Chloroethane	ND	5
Methylene Chloride	ND -	25
1,1-Dichloroethylene	ND	3
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	2
Chloroform	ND	1.5
1,2-Dichloroethane	ND	2
1,1,1-Trichloroethane	ND	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	ND	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	ND	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	ND	1
Chlorobenzene	ND	5 ·
Ethylbenzene	ND	1
Total Xylenes	1	1
1,3-Dichlorobenzene	ND	1
1,4-Dichlorobenzene	ND	1
1,2-Dichlorobenzene	ND	1

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-7-9-3

Job No: 12944

Date Matrix: Soil

Analyzed: 25-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1000

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	5
Bromomethane	ND	5
Vinyl Chloride	ND	3
Chloroethane	ND	5
Methylene Chloride	ND	25
1,1-Dichloroethylene	ND	3
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	2
Chloroform	ND	1.5
1,2-Dichloroethane	ND	2
1,1,1-Trichloroethane	10	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	ND	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	ND	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	40	1
Chlorobenzene	ND	1.1
Ethylbenzene	ND	1
Total Xylenes	1	1
1,3-Dichlorobenzene	ND	1
1,4-Dichlorobenzene	ND	1
1,2-Dichlorobenzene	ND	1

Client: WOODWARD-CLYDE CONSULTANTS

Job No:

12944

Date

Analyzed: 25-Jun-89

Analysis: EPA 601/602 (8010/8020)

Sample: B-7-9-4 *

Matrix: Soil

1 gm

Samp Amt: Dil Fact: 1000

Compound	Concentration mg/Kg	Detection Limits
***************************************		=======================================
Chloromethane	ND	5
Bromomethane	ND	5
Vinyl Chloride	ND	3
Chloroethane	ND	5
Methylene Chloride	ND	25
1,1-Dichloroethylene	ND	3
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	2
Chloroform	ND	1.5
1,2-Dichloroethane	ND	2
1,1,1-Trichloroethane	12	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	, 1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	ND	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	ND ·	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	25	1
Chlorobenzene	ND	8.3
Ethylbenzene	ND	1
Total Xylenes	ND	-
1,3-Dichlorobenzene	ND	1
1,4-Dichlorobenzene	ND	1
· · · · · · · · · · · · · · · · · · ·		1
1,2-Dichlorobenzene	ND	1

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-7-11-3

Job No: 12944

Date Matrix: Soil

Analyzed: 25-Jun-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1000

Compound	Concentration mg/Kg	Detection Limits
======================================		=======================================
Chloromethane	ND ·	5
Bromomethane	ND	5
Vinyl Chloride	ND	. 3
Chloroethane	ND	5
Methylene Chloride	ND	25
1,1-Dichloroethylene	57	3
1,1-Dichloroethane	ND	2
trans-1,2-Dichloroethylene	ND	1.5
Trichlorofluoromethane	ND	2
Chloroform	ND	1.5
1,2-Dichloroethane	ND	2 _
1,1,1-Trichloroethane	880	1.5
Carbon Tetrachloride	ND	1.5
Bromodichloromethane	ND	1.5
1,1,2,2-Tetrachloroethane	ND	1.5
1,2-Dichloropropane	ND	1.5
trans-1,3-Dichloropropylene	ND	1.5
Trichloroethylene	ND	1.5
Dibromochloromethane	ND	1.5
1,1,2-Trichloroethane	4	1.5
Benzene	ND	1
cis-1,3-Dichloropropylene	ND	1.5
2-Chloroethyl Vinyl Ether	ND	4
Bromoform	ND	2.5
Tetrachloroethylene	ND	1.5
Toluene	41	1
Chlorobenzene	ND	8.3
Ethylbenzene	ND	, 1
Total Xylenes	1.7	1
1,3-Dichlorobenzene	ND	1 1 1
1,4-Dichlorobenzene	ND	
1,2-Dichlorobenzene	ND	1

Client: WOODWARD CLYDE CONSULTANTS Sample: B-7-13-3

Job No: 12944

Date Matrix: Soil

Analyzed: 26-JUNE-89 Samp Amt: 1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 50

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	250
Bromomethane	ND	250
Vinyl Chloride	ND	150
Chloroethane	ND	250
Methylene Chloride	20000	1250
1,1-Dichloroethylene	600	150
1,1-Dichloroethane	ND	100
trans-1,2-Dichloroethylene	ND	75
Trichlorofluoromethane	ND	100
Chloroform	ND	75
1,2-Dichloroethane	ND	100 -
1,1,1-Trichloroethane	59000	75
Carbon Tetrachloride	ND	75
Bromodichloromethane	ND	75
1,1,2,2-Tetrachloroethane	ND	75
1,2-Dichloropropane	ND	75
trans-1,3-Dichloropropylene	ND	75
Trichloroethylene	ND	75
Dibromochloromethane	ND	75
1,1,2-Trichloroethane	ND	75
Benzene	ND	50
cis-1,3-Dichloropropylene	ND	75
2-Chloroethyl Vinyl Ether	ND	200
Bromoform	ND	125
Tetrachloroethylene	140	75
Toluene	450	50
Chlorobenzene	ND	300
Ethylbenzene	ND	50
Total Xylenes	ND	50
1,3-Dichlorobenzene	ND	100
1,4-Dichlorobenzene	ND	100
1,2-Dichlorobenzene	ND	100

CHAIN OF CUSTODY RECORD

SHIPMENT NO .:_

PAGE 2 OF 3

DATE 6 / 13/89

Sample	Number	Location	Type Materia	of Sample Method	Type of	Container	Type	of Preserva Chemic		Analysi	s Require	ed *
^ _	11 ./1	B-6	SAL		RRASS	TUBES	ILE	NONE	5	Canta	TAK	TAR
3-6-	7/24	DE	+340	OUF.	0 - 0	1	1	1		1	NOOR	
17-0	-12-5	 	 	1			11-	1			35 6	æ
13-6	-12-4						+ + -	+		17.	<u> </u>	()a_
B-6	<u> </u>					<u> </u>	+			+		
B-6	13-4				<u> </u>		+	++-				
B-L	- 14-3	1_1_					1-1	1				
R-E	7-14-4	V					$\bot \bot$			ļ		
12.7-	1-3	8-7										
- '- '	7-1-4	1 1					11.					
	7-3	+ +										٠
-	\$ 3	+										
<u>ئے</u>	2-4	 		- 	 							
_₿,	5-5	 			+			++-				
B. 1	<u>-3-4</u>	1			 		+-+	++-				
B-7	1-4-3				 		+ $+$					
8-7	7-4-4	1 1					+			-		
B-7	-5-3		·				\bot					
8-	7-5-4											
Q	7-6-3	1 1										
<u> </u>	7 / 1	 	- ,									
0-	<u> </u>	+-\#	- \/ -	+ +	 		1 AV	10 0				
	1-1-5	`	Chinandi	Sample	er's Signatu	10: 12	10	War-				
Tot	-	Samples	Shipped:	S Sample	Receiv		7	7,04	1		, Da	te
Rel	ed By:	Hely.	2) Ser			ature	122	MILLE	9	<u>, </u>	1011	3/.
ζ.	yame C	- X	ter 61	aesman		ted Name_		3:11 (00	<u>/</u>		Tir	ne
	101110		WCZ		Com	pany		A-1			- 1/24	ىڭ
	+C	del	m to	WCAS							71	
-	hed By:	~ 11	1			red By: 🖋	· - (\$	Eichan	$l \sim$		Da	
	cure	Selle	Jall			ature 🗀		Picyloo	<u>~ 0</u>		-01	3 /
Print	ed Name	Bill	CAY		1 .	ted Name_	1	MAS			コーブ	me
Com	pany		-/		Con	npany			012	944	ال ن ک	3-
	on				Recei	ved By:						ate
	uished By: ature				Sion	nature						/
	ed Name										- T	me
					Con	npany					-1	
	on										+==	
Ralino	uished By:					ved By:					1	ate
	ature										_	
											_ T	ime
					~							
neas	on	المرجعة الما	ing / Store	ge Requireme	nts:							
Specia	a Suibmeni	(/ mandi	my / Stole	ge medaneme								

CHAIN OF CUSTODY RECORD

SHIPMENT NO .: 4 PAGE 1 OF 3

DATE 6/13/89 PROJECT NAME: DOKKAS AIRCRAFT COMPANY 8941863 J-POCK) PROJECT NO .: _ Type of Preservation Type of Sample Analysis Required * Type of Container Location Sample Number Temp Chemical Material Method COMPET: Alistake BRASS TUBE NONE 115 B-6 MOD. 8-6-1-3 Soll Callentor COLIF. B-6-9-9 B-6-10-3 B-6-10-4 55 Sampler's Signature: Total Number of Samples Shipped: Date Received Bk Relinquished By: 61318 Signature_ Signature_ Printed Name, Printed Name Company Company_ Reason / Date Received By: Relinquished By: Signature ____ Signature ____ Printed Name. Printed Name_ Time Company_ 1012944 Company___ 135 Reason___ Date Received By: Relinquished By: Signature ... Signature_ Printed Name_ Printed Name_ Company_ Company___ Reason_ Date Received By: Relinquished By: Signature_ Signature_ Printed Name_ Printed Name_ Time Company_ Company__ Special Shipment / Handling / Storage Requirements: * Note - This does not constitute authorization to proceed with analysis

LA/OR-0183-421

CHAIN OF CUSTODY RECORD

SHIPMENT NO.: 4 PAGE 3 OF 3

PROJECT NAME: DOLLIAS ARCOAFT COMPANY
PROJECT NO.: 891868 J - TASK!

	3-7	Material	MOD. CAUF.	Type of Container	Temp KE	Chemical NOMES	Analysis I	le
B-7-7-4 B-7-8-3 B-7-8-4 B-7-9-3 B-7-10-3 B-7-10-3 B-7-11-3 B-7-11-3 B-7-12-3 U-7-12-4 B-7-13-3	3-7	SOL		BRASS TUBS	KE	AME	Alistai	le
8-7-8-3 B-7-8-4 B-7-9-3 B-7-10-3 B-7-10-3 B-7-11-3 B-7-11-3 B-7-12-3 U-7-12-4 B-7-13-3			CAUF.				(7/4) 83	16 1807 15-688
B-7-8-4 B-7-9-3 B-7-9-4 B-7-10-3 B-7-10-3 B-7-11-3 B-7-11-4 B-7-12-3 D-7-12-4 B-7-13-3							(7 H) 83	25-686
B-7-9-3 B-7-9-4 B-7-10-3 B-7-11-3 B-7-11-4 B-7-12-3 B-7-12-3							17 B 8:	5-681
B-7-9-4 B-7-10-3 B-7-10-4 B-7-11-3 B-7-11-4 B-7-12-3 D-7-12-4 B-7-13-3						()	_	
B-7-10-3 B-7-10-4 B-7-11-3 B-7-11-3 B-7-12-3 D-7-12-4 B-7-13-3								
B-7-10-4 B-7-11-3 B-7-11-4 B-7-12-3 0-7-12-4 B-7-13-3								
B-7-11-3 B-7-11-4 B-7-12-3 0-7-12-4 B-7-13-3								
B-7-11-5 B-7-12-3 B-7-12-4 B-7-13-3			 		1			
B-7-12-3 0-7-12-3 B-7-13-3			 		- - -			
B-7-12-4 B-7-13-3					++-			
B-7-12-4 B-7-13-3						 		
13-7-13-3								
0 19 /1								
B-7-15-41						 		
B-7-43				ļ	_	 		
B-7-14-4	V		. 1	Y	V			
				<u> </u>				
		<u> </u>						
		ļ	 					
Total Number of Sa	- alas Shi	pped: /	Sample	r's Signature:		10-		
) J	1/	100	Received By:		20		Date
Relinquished By: Signature	50 4	sem		Signature	Dill	for	<i>(</i>	21131
Printed Name	Sel	of Glas	REMAN	Printed Name		CALL		Time
Company C	Antin	wcc,	vess.	Company				9:4
Reason_TV_C	er.va		MAS.		. ^			Date
Relinquished By:	7-119	200		Received By: A	mi 01	Cichards		0/13
Signature		- No		Printed Name				
Printed Name	0110	779		Company	MARA	5 b 12	944	Time 5
Reason	77	/			1001	7 112		
Relinguished By:				Received By:				Date
Signature				Signature				
Printed Name				Printed Name				Time
Company Reason				Company				
Relinquished By:				Received By:				Date
Signature					······			_/
Printed Name				Printed Name	·			Time
Company				Company				
Special Shipment /								

RECEIVED

10F 0 9 1303

June 30, 1989

WCC-SANT

WEST COAST **ANALYTICAL** SERVICE, INC.

RMAL FRICAL CHEMISTS

Α

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Drive Santa Ana, CA 92705

Attn:

Dr. Alistaire Callender

JOB NO.

12962

LABORATORY REPORT

Samples Received: Fifty-six (56) soils

Date Received: 6-15-89

Date Released for Analysis: 6-20-89

Purchase Order No: Proj#: 8941863J/Task 1-Douglas Aircraft

The samples were analyzed as follows:

Samples Analyzed

Analysis

Results

Eight (8) soils

Halogenated and Aromatic

Volatile Organics by EPA 8010/8020

Data Sheets

Page 1 of 1

Shelley Stuart

Senior Chemist

D.J. Northington, Ph.D.

Technical Director

9840 Alburtis Avenue • Santa Fe Springs, California 90670 • 213/948-2225

Client: Sample: B-8-10-3 WOODWARD CLYDE CONSULTANTS

Job No: 12962

Date

Matrix: Soil Samp Amt: Dil Fact: Analyzed: 28-JUNE-89 0.1 gm 1 Analysis: EPA 601/602 (8010/8020)

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	ND	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	ND	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	ND	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.27	0.01
Chlorobenzene	ND	0.01
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD CLYDE CONSULTANTS Sample: B-8-11-3

Job No: 12962

Date Matrix: Soil

Analyzed: 28-JUNE-89 Samp Amt: 0.1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	ND	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND .	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	ND	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	ND	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.04	0.01
Chlorobenzene	ND	0.01
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ИD	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-8-12-3

Job No: 12962

Date Matrix: Soil

Analyzed: 28-Jun-89 Samp Amt: 0.1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	ND	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	0.12	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	ND	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.06	0.01
Chlorobenzene	ND	0.07
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-8-13-3

Job No: 12962

Date Matrix: Soil

Analyzed: 28-Jun-89 Samp Amt: 0.1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	0.04	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	0.44	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	ND	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	1.0	0.01
Chlorobenzene	ND	0.07
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD CLYDE CONSULTANTS Sample: B-8-14-3

Job No: 12962

Date Matrix: Soil

Analyzed: 28-JUNE-89 Samp Amt: 0.1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	ND	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	0.05	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	ND	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	25	0.01
Chlorobenzene	ND	0.01
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-9-9-3

Job No: 12962

Date

Matrix: Soil Analyzed: 28-Jun-89 Analysis: EPA 601/602 (8010/8020) Samp Amt: Dil Fact: 0.1 gm

1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	0.03	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	0.02	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	0.08	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.1	0.01
Chlorobenzene	ND	0.07
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD CLYDE CONSULTANTS Sample: B-9-11-3

Job No: 12962

Date Matrix: Soil

Analyzed: 28-JUNE-89 Samp Amt: 0.1 gm Analysis: EPA 601/602 (8010/8020) Dil Fact: 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	ND	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	ND	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	. 0.02
Trichloroethylene	0.02	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.11	0.01
Chlorobenzene	ND	0.01
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

Client: WOODWARD-CLYDE CONSULTANTS Sample: B-9-12-3

Job No: 12962

Date

Soil Matrix:

Analyzed: 28-Jun-89 Analysis: EPA 601/602 (8010/8020) Samp Amt: Dil Fact: 0.1 gm 1

Compound	Concentration mg/Kg	Detection Limits
Chloromethane	ND	0.05
Bromomethane	ND	0.05
Vinyl Chloride	ND	0.03
Chloroethane	ND	0.05
Methylene Chloride	ND	0.25
1,1-Dichloroethylene	ND	0.03
1,1-Dichloroethane	ND	0.02
trans-1,2-Dichloroethylene	ND	0.02
Trichlorofluoromethane	ND	0.02
Chloroform	ND	0.02
1,2-Dichloroethane	ND	0.02
1,1,1-Trichloroethane	0.03	0.02
Carbon Tetrachloride	ND	0.02
Bromodichloromethane	ND	0.02
1,1,2,2-Tetrachloroethane	ND	0.02
1,2-Dichloropropane	ND	0.02
trans-1,3-Dichloropropylene	ND	0.02
Trichloroethylene	ND	0.02
Dibromochloromethane	ND	0.02
1,1,2-Trichloroethane	ND	0.02
Benzene	ND	0.01
cis-1,3-Dichloropropylene	ND	0.02
2-Chloroethyl Vinyl Ether	ND	0.04
Bromoform	ND	0.03
Tetrachloroethylene	ND	0.02
Toluene	0.06	0.01
Chlorobenzene	ND	0.07
Ethylbenzene	ND	0.01
Total Xylenes	ND	0.01
1,3-Dichlorobenzene	ND	0.01
1,4-Dichlorobenzene	ND	0.01
1,2-Dichlorobenzene	ND	0.01

CHAIN OF CUSTODY RECORD

SHIPMENT NO.: 5

PAGE 1 OF 3

DATE 6 1141 39

PROJECT NAME: DUGLAS AIRCRAFT CO. 2941863 J PROJECT NO .: _ Type of Preservation Type of Sample Analysis Required* Type of Container Sample Number Location Chemical Temp Method Material NOVE COMPACT: 324SS TIBE 165 MOD. 8-8-1-3 3-2 < 11L Alisare College CALIF. -8-1-4 114) 835-6886 -9-3 - 8-10-3 Total Number of Samples Shipped: 56 Sampler's Signature: Date Received By: / Relinquished By: 6/15/89 Signature_ Signature_ Printed Nans Time Printed Name. Company_ 9:50 Company. Reason___ Date Received By: Relinquished By 10/15/8 Signature__ Signature Printed Name_ Printed Name. Time Company_ 1012962 Company_ Reason_ Date Received By: Relinquished By: Signature_ Signature_ Printed Name_ Printed Name_ Time Company_ Company__ Reason_ Date Received By: Relinquished By: Signature. Signature_ Printed Name_ Time Printed Name. Company_ Company_ Reason ___ Special Shipment / Handling / Storage Requirements: Note — This does not constitute authorization to proceed with analysis LA/OR-0183-421

CHAIN OF CUSTODY RECORD

SHIPMENT NO.: 5 PAGE_20F_3 DATE 6 1141 89

PROJECT NAME: DOUGLAS AIR CAFT. CD.
PROJECT NO.: 89 41863 J - TASK 1

Sample Number	Location	Type o	f Sample	Type of Container		of Preservation	Analysis Required*
Sample Number	Location	Material	Method		Temp	Chemical	
3-311-3	3-3	SoiL	,400.	BRASS TIBE	KE	NAME	CONTACT:
R-8-11-4		1	COLIF.	1			Alistaire
B-8-12-3			,				Callender
B-8-12-4	 		 				(74) 335-628
	 	 					
8-8-13-3	╁╌╌┼	 	+ + -				
B-2-13-4	 	+	+		1 1		
B-8-14-3	 		 		+-+-		
B-8-14-4	V	 		 	+ + +		
B-9-1-3	B-9	 	 		+		
B-9-1-4	1-1-	 					
B-9-2-3							
B-9-2-4			 				
B-9-3-3							
B-9-3-4							
8-9-4-3							
2-9-4-4							
1-9-5-3	1 1						
20 5-4							
10 5 3	 	+	1.1				
B-1-6-3	+ - \	17/	$+ \forall$	├	1. 1/	V	
Total Number of	Samples St	nipped: C	Sample	r's Signature:	John	700	
Relinquished By:	01	00		Received By:		o D.	Date
Signature	120	grow		Signature	myt	· Carpon	6/15/8
Printed Name	/ re	125 6	to som	Printed Name_	A	P. 45:045	Time
Company	deling	- tha	LCAS	Company		,	9:50
				Received By: A	-11-17		Date
Relinquished By: Signature		Sar	·	Signature	mill	ichaids	(Q / 15 /8
Printed Name	Lection	P. 15:	٣٠	Printed Name	1		Time
Company				Company	— ₩CA	> 1012	962 (2:30)
Reason	<u> </u>						Date
Relinquished By:				Received By:			, Jake
Signature				Signature Printed Name			
Printed Name Company				Company			Time
Reason							
Relinquished By:				Received By:			Date
Signature							Time
Signature Printed Name_				Company			
Signature Printed Name_ Company				 1			
Signature Printed Name_ Company Reason		. / \$	Requireme				
Signature Printed Name_ Company		g / Storage	Requireme	nts:			
Signature Printed Name_ Company Reason		g / Storage	Requireme	nts:			
Signature Printed Name_ Company Reason		g / Storage	Requireme	nts:			

CHAIN OF CUSTODY RECORD

SHIPMENT NO .:_ 3_OF_

DATE 6 1141 PROJECT NAME: DOUGUAS AIRCLAFT CO. 8941863 J-TASK 1 PROJECT NO .: _ Type of Preservation Analysis Required* Type of Sample Type of Container Location Sample Number Temp Chemical Material Method RRASS TUBE NOME 1CE CONTACT: MOD B-9 SOLL Alistaire CALIF. Callentor 714) 835-688 2-9-9-3 R-9-10-3 3-9-10-4 R-9-13-3 B-9-14-3 Total Number of Samples Shipped: 56 Sampler's Signature: Date Received By: Relinquished By: Signature Printed Name 6/15/89 Signature_ Glassur Printed Name Time Company_ Company_ 9:50 Reason_ Was Date Received By: 115180 Relinquished By: Signature ____ Signature 7 Printed Name. Printed Name_ Company_ Company___ Reason_ Date Received By: Relinquished By: Signature. Signature_ Printed Name_ Printed Name_ Time Company_ Company__ Reason_ Date Received By: Relinquished By: Signature_ Signature_ Printed Name_ Time Printed Name_ Company_ Company___ Special Shipment / Handling / Storage Requirements: * Note - This does not constitute authorization to proceed with analysis LA/OR-0183-421

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Drive Santa Ana, CA 92705

Attn:

Dr. Alistaire Callender

JOB NO.

13191

Α

LABORATORY REPORT

Samples Received: Nine (9) liquids in quadruplicate and one (1)

liquid in duplicate

Date Received: 7-13-89

Date Released for Analysis: 7-17-89

Purchase Order No: Proj#: 8941863J-Task 1/Douglas Aircraft

The samples were analyzed as follows:

Samples Analyzed

Analysis

Results

Fifteen (15) liquids

Volatile Organics

by EPA 624

Data Sheets

Page 1 of 1

Michael Shelton

Senior Chemist

B. Michael Hovanec Senior Staff Chemist CLIENT: WOODWARD-CLYDE

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V1
DATE EXTRACTED: 07/24/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/24/89 MATRIX: WATER

SAMPLE: D.I.-A

CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6 100-41-4	ETHYLBENZENE	ND	1.
	ETHYLENE DIBROMIDE	ND	i.
106-93-4 76-13-1	FREON-TF	ND	1.
	2-HEXANONE	ND	5.
119-78-6 75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	ī.
79-00-5	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	i.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINIL ACCIAIL VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
20 4. 0			- -

CLIENT:

WOODWARD-CLYDE

SAMPLE: D.I.-A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-1S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V10
DATE EXTRACTED: 07/21/89 SAMPLE AMOUNT: 250UL
DATE ANALYZED: 07/21/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	100.
71-43-2	BENZENE	ND	20.
75-27-4	BROMODICHLOROMETHANE	ND	20.
75-25-2	BROMOFORM	ND	20.
74-83-9	BROMOMETHANE	ND	100.
78-93-3	2-BUTANONE (MEK)	ND	100.
75-15-0	CARBON DISULFIDE	ND	20.
56-23-5	CARBON TETRACHLORIDE	ND	20.
108-90-7	CHLOROBENZENE	ND	20.
75-00-3	CHLOROETHANE	ND	100.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	200.
67-66-3	CHLOROFORM	ND	20.
74-87-3	CHLOROMETHANE	ND	100.
108-41-8	CHLOROTOLUENE	ND	20.
124-48-1	DIBROMOCHLOROMETHANE	ND	20.
95-50-1	1,2-DICHLOROBENZENE	ND	20.
541-73-1	1,3-DICHLOROBENZENE	ND	20.
106-46-7	1,4-DICHLOROBENZENE	ND	20.
75-34-3	1,1-DICHLOROETHANE	ND	20.
107-06-2	1,2-DICHLOROETHANE	ND	20.
75-35-4	1,1-DICHLOROETHYLENE	900.	20.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	20.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	20.
78-87-5	1,2-DICHLOROPROPANE	ND	20.
10061-01-5	•	ND	20.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	20.
100-41-4	ETHYLBENZENE	ND	20.
106-93-4	ETHYLENE DIBROMIDE	ND	20.
76-13-1	FREON-TF	ND	20.
119-78-6	2-HEXANONE	ND	100.
75-09-2	METHYLENE CHLORIDE	ND	100.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	100.
100-42-5	STYRENE	ND	20.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	20.
127-18-4	TETRACHLOROETHYLENE	ND	20.
109-99-9	TETRAHYDROFURAN	ND	100.
108-88-3	TOLUENE	ND	20.
71-55-6	1,1,1-TRICHLOROETHANE	67.	20.
79-00-5	1,1,2-TRICHLOROETHANE	ND	20.
79-01-6	TRICHLOROETHYLENE	2400.	20.
75-69-4	TRICHLOROFLUOROMETHANE	ND	20.
108-05-4	VINYL ACETATE	ND	100.
75-01-4	VINIL CHLORIDE	ND	100.
95-47-6	TOTAL XYLENES	ND	20.
33-47-0	TOTAL VIDENES	ND	20.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-1S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-1S-1R

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V13
DATE EXTRACTED: 07/21/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/21/89 MATRIX: WATER

	,,		
CAS #	СОМРОИИД	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND.	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	ī.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	· ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	ī.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	i.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-01-5	•	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE	ND	1.
		ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND ND	1.
76-13-1	FREON-TF		5.
119-78-6	2-HEXANONE	ND	
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-1S-1R

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-2S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V1
DATE EXTRACTED: 07/20/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/20/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND.	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	5.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
-			

WOODWARD-CLYDE

SAMPLE: WCC-2S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-3S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V50
DATE EXTRACTED: 07/25/89 SAMPLE AMOUNT: 10UL
DATE ANALYZED: 07/25/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	
*========			
67-64-1	ACETONE	ND	3000.
71-43-2	BENZENE	ND	500.
75-27-4	BROMODICHLOROMETHANE	ND	500.
75-25-2	BROMOFORM	ND	500.
74-83-9	BROMOMETHANE	ND	3000.
78-93-3	2-BUTANONE (MEK)	ND	3000.
75-15-0	CARBON DISULFIDE	ND	500.
56-23-5	CARBON TETRACHLORIDE	ND	500.
108-90-7	CHLOROBENZENE	ND	500.
75-00-3	CHLOROETHANE	ND	3000.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	5000.
67-66-3	CHLOROFORM	ND	500.
74-87-3	CHLOROMETHANE	ND	3000.
108-41-8	CHLOROTOLUENE	ND	500.
124-48-1	DIBROMOCHLOROMETHANE	ND	500.
95-50-1	1,2-DICHLOROBENZENE	ND	500.
541-73-1	1,3-DICHLOROBENZENE	ND	500.
106-46-7	1,4-DICHLOROBENZENE	ND	500.
75-34-3	1,1-DICHLOROETHANE	ND	500.
107-06-2	1,2-DICHLOROETHANE	ND	500.
75-35-4	1,1-DICHLOROETHYLENE	18000.	500.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	500.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	660.	500.
78-87-5	1,2-DICHLOROPROPANE	ND	500.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	500.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	500.
100-41-4	ETHYLBENZENE	ND	500.
106-93-4	ETHYLENE DIBROMIDE	ND	500.
76-13-1	FREON-TF	ND	500.
119-78-6	2-HEXANONE	ND	3000.
75-09-2	METHYLENE CHLORIDE	ND	3000.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	3000.
100-42-5	STYRENE 2 PENTANONE (MIDK)	ND	500.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	500.
		ND	500.
127-18-4	TETRACHLOROETHYLENE	ND	3000.
109-99-9	TETRAHYDROFURAN	32000.	
108-88-3	TOLUENE		500. 500.
71-55-6	1,1,1-TRICHLOROETHANE	56000.	500.
79-00-5	1,1,2-TRICHLOROETHANE	550. 7700.	
79-01-6	TRICHLOROETHYLENE		500.
75-69-4	TRICHLOROFLUOROMETHANE	ND	500.
108-05-4	VINYL ACETATE	ND	3000.
75-01-4	VINYL CHLORIDE	ND	3000.
95-47-6	TOTAL XYLENES	ND	500.

WOODWARD-CLYDE

SAMPLE: WCC-3S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE

DATE RECEIVED: 07/13/89

DATE EXTRACTED: 07/25/89

DATE ANALYZED: 07/25/89

WCAS JOB #: 13191

SAMPLE: WCC-4S-1A

RUN NUMBER: 13191V60

SAMPLE AMOUNT: 2ML

MATRIX:

WATER

UNITS: UG/L (PPB)

VOLATILE ORGANICS (EPA 624/8240)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT

CAS #	COMPOUND	CONCENTRATION DET	DIMII
=========	=======================================		=====
		ND	20.
67-64-1	ACETONE	ND	3.
71-43-2	BENZENE	ND	3.
75-27-4	BROMODICHLOROMETHANE	ND	3.
75-25-2	BROMOFORM	ND	20.
74-83-9	BROMOMETHANE	ND	20.
78-93-3	2-BUTANONE (MEK)	ND	3.
75-15-0	CARBON DISULFIDE	ND	3.
56-23-5	CARBON TETRACHLORIDE	. ND	3.
108-90-7	CHLOROBENZENE	ND	20.
75-00-3	CHLOROETHANE	ND	30.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	3.
67-66-3	CHLOROFORM	ND	20.
74-87-3	CHLOROMETHANE	ND	3.
108-41-8	CHLOROTOLUENE	ND	3.
124-48-1	DIBROMOCHLOROMETHANE	ND	3.
95-50-1	1,2-DICHLOROBENZENE	ND	3.
541-73-1	1,3-DICHLOROBENZENE	ND	3.
106-46-7	1,4-DICHLOROBENZENE	ND	3.
75-34-3	1,1-DICHLOROETHANE	ND	3.
107-06-2	1,2-DICHLOROETHANE		3.
75-35-4	1,1-DICHLOROETHYLENE	170.	3.
156-59-4	CIS-1,2-DICHLOROETHYLENE	10.	3.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	3.
78-87-5	1,2-DICHLOROPROPANE	ND	
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	3.
10061-02-6	· · · · · · · · · · · · · · · · · · ·	ND	3. 3.
100-41-4	ETHYLBENZENE	ND	
106-93-4	ETHYLENE DIBROMIDE	ND	3.
76-13-1	FREON-TF	ND	3.
119-78-6	2-HEXANONE	ND	20.
75-09-2	METHYLENE CHLORIDE	ND	20.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	20.
100-42-5	STYRENE	ND	٫3٠
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	3.
127-18-4	TETRACHLOROETHYLENE	ND	3.
109-99-9	TETRAHYDROFURAN	ND	20.
108-88-3	TOLUENE	ND	3.
71-55-6	1,1,1-TRICHLOROETHANE	11.	3.
79-00-5	1,1,2-TRICHLOROETHANE	ND	3.
79-01-6	TRICHLOROETHYLENE	270.	3.
75-69-4	TRICHLOROFLUOROMETHANE	ND	3.
108-05-4	VINYL ACETATE	ND	20.
75-01-4	VINYL CHLORIDE	ND	20.
95-47-6	TOTAL XYLENES	ND	3.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-4S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-5S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V51
DATE EXTRACTED: 07/25/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/25/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
.,,			
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78 - 93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	ī.
108-90-7	CHLOROBENZENE	. ND	1.
		ND	5.
75-00-3	CHLOROETHANE		- .
110-75-8	2-CHLOROETHYLVINYLETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
		ND	1.
75-34-3	1,1-DICHLOROETHANE		
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	3.	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	6.	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87 - 5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2 _.	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
			_
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	13.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
20 4. 9			- •

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-5S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE

DATE RECEIVED: 07/13/89

WCAS JOB #: 13191

SAMPLE: WCC-5S-1B

RUN NUMBER: 13191V52

DATE EXTRACTED: 07/25/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/25/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
******		=======================================	=======
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	10:
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	. ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	3.	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	6.	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ЙD	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	12.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT: WOODWARD-CLYDE WCAS JOB #: 13191

SAMPLE: WCC-5S-1B

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-7S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V61
DATE EXTRACTED: 07/25/89 SAMPLE AMOUNT: 500UL
DATE ANALYZED: 07/25/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	
		=======================================	
67-64-1	ACETONE	ND	50.
71-43-2	BENZENE	ND	10.
75-27-4	BROMODICHLOROMETHANE	ND	10.
75-25-2	BROMOFORM	ND	10.
74-83-9	BROMOMETHANE	ND	50.
78-93-3	2-BUTANONE (MEK)	ND	50.
75-15-0	CARBON DISULFIDE	ND	10.
56-23-5	CARBON TETRACHLORIDE	ND	10.
108-90-7	CHLOROBENZENE	ND	10.
75-00-3	CHLOROETHANE	ND	50.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	100.
67-66-3	CHLOROFORM	ND	10.
74-87-3	CHLOROMETHANE	ND	50.
108-41-8	CHLOROTOLUENE	ND	10.
124-48-1	DIBROMOCHLOROMETHANE	ND	10.
95-50-1	1,2-DICHLOROBENZENE	ND	10.
541-73-1	1,3-DICHLOROBENZENE	ND	10.
106-46-7	1,4-DICHLOROBENZENE	ND	10.
75-34-3	1,1-DICHLOROETHANE	ND	10.
107-06-2	1,2-DICHLOROETHANE	ND	10.
75-35-4	1,1-DICHLOROETHYLENE	850.	10.
156-59-4	CIS-1,2-DICHLOROETHYLENE	26.	10.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	11.	10.
78-87-5	1,2-DICHLOROPROPANE	ND	10.
10061-01-5		ND	10.
10061-02-6	•	ND	10.
100-41-4	ETHYLBENZENE	ND	10.
106-93-4	ETHYLENE DIBROMIDE	ND	10.
76-13-1	FREON-TF	ND	10.
119-78-6	2-HEXANONE	ND	50.
75-09-2	METHYLENE CHLORIDE	ND	50.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	50.
100-42-5	STYRENE (MIDK)	ND	10.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	10.
127-18-4	TETRACHLOROETHYLENE		
109-99-9	TETRACTIONOETHTLENE	ND	10.
108-88-3	TOLUENE	ND	50.
71-55-6		ND	10.
	1,1,1-TRICHLOROETHANE	110.	10.
79-00-5 79-01-6	1,1,2-TRICHLOROETHANE	ND	10.
	TRICHLOROETHYLENE	1300.	10.
75-69-4	TRICHLOROFLUOROMETHANE	ND	10.
108-05-4	VINYL ACETATE	ND	50.
75-01-4	VINYL CHLORIDE	ND	50.
95-47-6	TOTAL XYLENES	ND	10.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-7S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-8S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V58
DATE EXTRACTED: 07/25/89 SAMPLE AMOUNT: 1ML
DATE ANALYZED: 07/25/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	
======			
67-64-1	ACETONE	ND	30.
71-43-2	BENZENE	ND	5.
75-27-4	BROMODICHLOROMETHANE	ND	5.
75-25-2	BROMOFORM	ND	5.
74-83-9	BROMOMETHANE	ND	30.
78-93-3	2-BUTANONE (MEK)	ND	30.
75-15-0	CARBON DISULFIDE	ND	5.
56-23-5	CARBON TETRACHLORIDE	ND	5.
108-90-7	CHLOROBENZENE	ND	5.
75-00-3	CHLOROETHANE	ND	30.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	50.
67-66-3	CHLOROFORM	ND	5.
74-87-3	CHLOROMETHANE	ND	30.
108-41-8	CHLOROTOLUENE	ND	5.
124-48-1	DIBROMOCHLOROMETHANE	ND	5.
95-50-1	1,2-DICHLOROBENZENE	ND	5.
541-73-1	1,3-DICHLOROBENZENE	ND	5.
106-46-7	1,4-DICHLOROBENZENE	ND	5.
75-34-3	1,1-DICHLOROETHANE	ND	5.
107-06-2	1,2-DICHLOROETHANE	ND	5.
75-35-4	1,1-DICHLOROETHYLENE	430.	5.
156-59-4	CIS-1,2-DICHLOROETHYLENE	7.	5.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	9.	5. 5.
78-87-5	1,2-DICHLOROPROPANE	ND	5. 5.
10061-01-5		ND	5. 5.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	5.
100-41-4	ETHYLBENZENE	ND	5. 5.
106-93-4	ETHYLENE DIBROMIDE	ND	
76-13-1	FREON-TF	ND	5. 30.
119-78-6	2-HEXANONE	ND	
75-09-2	METHYLENE CHLORIDE	ND	30. 30.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	5.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	5.
127-18-4	TETRACHLOROETHYLENE	ND	30.
109-99-9	TETRAHYDROFURAN	ND	
108-88-3	TOLUENE	ND	5.
71-55-6	1,1,1-TRICHLOROETHANE	160.	5. 5.
79-00-5	1,1,2-TRICHLOROETHANE	ND	5.
79-01-6	TRICHLOROETHYLENE	240.	
75-69-4	TRICHLOROFLUOROMETHANE	ND	5.
108-05-4	VINYL ACETATE	ND	30.
75-01-4	VINYL CHLORIDE	ND	30.
95-47-6	TOTAL XYLENES	ND	5.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-8S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE

WCAS JOB #: 13191

SAMPLE: WCC-8S-1R

DATE RECEIVED: 07/13/89 DATE EXTRACTED: 07/25/89 RUN NUMBER: 13191V54

SAMPLE AMOUNT: 5ML DATE ANALYZED: 07/25/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
*****			=======================================
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	. ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYLETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1, 2-DICHLOROETHYLENE	ND	1.
78 - 87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5		ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND.	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-8S-1R

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-10S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13193V4
DATE EXTRACTED: 07/21/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/21/89 MATRIX: WATER

	•		
CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ИD	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	3.	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	2	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5		ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	86.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-10S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

FRACTION CONCENTRATION COMPOUND NAME

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-10S-1B

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V5
DATE EXTRACTED: 07/21/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/21/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	. ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	3.	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	1.	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	87.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
50 11 0			

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-10S-1B

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-10S-1R

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V6
DATE EXTRACTED: 07/21/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/21/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINIL ROBINIE VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
95-4/-6	TOTAL VITENES	ND	

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-10S-1R

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE SAMPLE: WCC-11S-1A

WCAS JOB #: 13191

DATE RECEIVED: 07/13/89 RUN NUMBER: 13191V63
DATE EXTRACTED: 07/25/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 07/26/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	
	=======================================		
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1. 5.
75-00-3	CHLOROETHANE	ND	10.
110-75-8	2-CHLOROETHYLVINYLETHER	ND ND	1.
67-66-3	CHLOROFORM	ND	5.
74-87-3	CHLOROMETHANE	ND ND	1.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	i.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	ī.
10061-02-6		ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	5.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	1.
100-42-5	STYRENE	ND	ī.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	5.
109-99-9	TETRAHYDROFURAN	ND	1.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	5.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ИD	1.
95-47-6	TOTAL XYLENES	ND	-,

CLIENT:

WOODWARD-CLYDE

SAMPLE: WCC-11S-1A

WCAS JOB #: 13191

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

Data Reporting Qualifiers

- Value If the result is a value greater than or equal to the Detection Limit (DL), the value is reported.
- ND Indicates that the compound was analyzed for but not detected. The minimum DL for the sample with the ND is reported based on necessary concentration or dilution actions.
- TR Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified DL but greater than zero.

13/11/12:

Woodward-Clyde Consultants

SHIPMENT NO.:

CHAIN OF CUSTODY RECORD

PAGE_/ OF Z

PROJECT NAME: Dauglas Aircraft Co./C6

DATE 7 /12/89

+			Type of	Sample		Type	of Preservation	Analysis	Required *
	Sample Number	Location	Material	Method	Type of Container	Temp	Chemical	Analysis	s nequired
_	WCC-15-1A	1466-15	WATER	BAILER	40 MR UDA	KE	NONE	CUNTA	نت:
	wcc-15-18	1		1	1	1.		T .	KIPE CAKING
	WCC-15-1C		 		400 gliss			(714)	335-600
		V	 		40 ai VSA			F	
	UCC-15-1R					111			
	WCC-25-14		 	 		1 1			
	WCC-25-18	1 1	 	 	1 02 2/55	1 1			
ŀ	UCC-25-19		 	 	4 02. 7655 40 ~ VOA	1 1			
-	Mc-25-1R		 	 	70 ~ 005	1 1			
ŀ	WCC -35-1A	MCC-32	 	 		 			
	WCC-35-1B	 	 		1 1/	+ + +		 	-
ŀ	wcc-35-1c		} 	 	4 02.9/55 4) 2 VUA	+ + + +		 	
L	WC-35-1R		↓	 	40 VE - VOX	+			
L	WCC-45-1A	WCC-4	4	 	ļ. — — — — — — — — — — — — — — — — — — —	+			
L	WC-45-1B			 	Y	+			
L	WCL-451C				9 oz. glass	+ - +		- 	
	WCC-45-1R	V			qual VOA				
	WC-55-1A	WCK-5				1			
ľ	WCC-55-18			1.	*	1			
ľ	ucc-55-10	1 1			4 02, 9455	1 1			
•	WCC-55-1R	T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	V	40 L VOA	V	0.1		
ŀ	Total Number of	Samples Sh	ipped: 35	Sample	er's Signature:	Your .	Har		
l	Relinquished By:		Slow-		Received By:	7) -0	Dib.	`	Date
۱	Signature	10x/			Signature Printed Name	Munes	Parick.		71/3/8
I	Printed Nanse	1-64	T Glass		Company	VAVIU	4-1		Time
l	CompanyReason	a net y	es by	WCAS					9:05
ŀ			187 to		Received By:	- GT	7. [].		Date
l	Relinquished By: Signature) Paris			Signatura (1)	myk	ichards		7/13/2
١	Printed Name	D. Rozia	(K)		Printed Name_		IL RICHA	502	Time
Ì	Company	<u> </u>			Company	NOAS	No 1 3 1	91	17:10
		DELIVE	(KF)		- Descined Par				Date
	Relinquished By:				Received By: Signature				. / /
	Signature Printed Name				Printed Name_				Time
	Company				Company	,			
	Reason								
	Relinquished By:				Received By:				Date /
	Signature								<u> </u>
	Printed Name								Time
	Company Reason								<u> </u>

* Note - This does not constitute authorization to proceed with analysis

LA. OR -0183

	•	Woo	dward-	Clyde Consulta	ants 🖥	SHI	PMENT NO.:_	6_
CHAIN OF CUSTODY RECORD							SE2OF_	<u>ک</u>
	PROJEC	T NAME:_	Dougla	c Arrival (0./0	6 DA	TE 7 112	<u>139</u>
	PROJEC	T NO.:	59418	363) - TUSK]		-	
Sample Number	Location	Type of		Type of Container	Type	of Preservation	Analysis	Requi
		Material	Method	0 . () () (Temp 1 <e< td=""><td>Chemical</td><td>Cu 49 1</td><td></td></e<>	Chemical	Cu 49 1	
CC-75-1A	144-73	Work	BAILLE	40 mi VOA	116	10/20	21.5%	
(C-75-18				4	+++		(7.4) 3	
ICC -75-1C	T 14			4 oz glis	+++		7,73	,
KC-75-12				40 ME COM	+			
KC-85-1A	WCC-SI			ļ	+-+-+			
VCC-85-1B				V	+-+-			
100-85-15				4 02. glass	 		- +	
14-85-16			 	40 me von	┼╌┼╌┤			
CC-105-1A					+			
cc-105-1B				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
CC-105-10				407.9655				
cc-105-1R				40 ml UNA				
«-115-1A	WCC-11<							
ICC-115-1B				y				
				4 02. 165C				
KC-115-10				9 02. 7655 40 Ne VOA				
cc-115-1R			975					
). [A	177		100	V	1	Ψ		
P.J.B	100		1		7	34		
	 					00		
otal Number of	Samples Sh	inned: 35	Sample	er's Signature:	111	and the second		
	Samples Sil	ipped. 3 C	1 38p	Received By:	0 - 0	0.1.		
elinquished By: Signature	Sel	Dear	an	→ Signature 6	bud !	auk_		7/
Printed Name			GILESMO	Printed Name_		Rozicki		Т
Company		KC	- WEAS	Company	A-1			9.
Reason t _C				Serviced Bury	(ī
elinquished By	sdel	very te	•	Received By: A	out K	charde		7/
Signature Printed Name	D. OROZ	icki		Signature_/_\ Printed Name_	-HOKI	L RICHT	<u> 205</u>	
Company	A-1			Company	WCAS.	10131	91	1
Reason	DELINE	eeD						+=
elinguished By:				Received By:				,
Signature				Signature Printed Name				-
Printed Name				Company				
Company Reason								1-
elinguished By:				Received By:				1,
Signature				Signature				-
Printed Name_				Printed Name				
Company				Company				1-
Reason								

* Note — This does not constitute authorization to proceed with analysis

BOE-C6-0092314

LA. OR -018.

August 9, 1989

RECEIVED

C131 O 1 BUA

WCC-SANTA ANA

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Drive Santa Ana, CA 92705

Attn:

Dr. Alistaire Callender

JOB NO.

13290

Α

LABORATORY REPORT

Samples Received: Twelve (12) waters

Date Received: 7-26-89

Date Released for Analysis: 8-7-89

Purchase Order No: Proj#: 8941863J/Task 1-Douglas Aircraft

The samples were analyzed as follows:

Samples Analyzed

<u>Analysis</u>

Results

Two (2) waters

Volatile Organics

by EPA 624

Data Sheets

Page 1 of 1

Michael Shelton

Senior Chemist

D. Morthington, Ph.D.

Technical Director

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-1D-1A

WCAS JOB #: 13290

DATE RECEIVED: 07/26/89 RUN NUMBER: 13290V1
DATE EXTRACTED: 08/08/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 08/08/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	========== ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND .	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	. 1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	5.	5.
108-88-3	TOLUENE	1.	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	2.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
-		4. -	- -

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-1D-1A

WCAS JOB #: 13290

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-3D-1A

WCAS JOB #: 13290

DATE RECEIVED: 07/26/89
DATE EXTRACTED: 08/08/89
DATE ANALYZED: 08/08/89

RUN NUMBER: 13290V2
SAMPLE AMOUNT: 5ML
MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	11.	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	/ ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	3.	1.
71-55-6	1,1,1-TRICHLOROETHANE	49.	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	4.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-3D-1A

WCAS JOB #: 13290

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

Data Reporting Qualifiers

- Value If the result is a value greater than or equal to the Detection Limit (DL), the value is reported.
- ND Indicates that the compound was analyzed for but not detected. The minimum DL for the sample with the ND is reported based on necessary concentration or dilution actions.
- TR Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified DL but greater than zero.

		Woo	dward-	Ctyde (Consult	ants 🔻		SHIPM	ENT NO	.;
	-	C	CHAIN OF	CUSTO	DY RECO	ORD		PAGE	OF	
	PPO IEC	T NAME:	Dung	- i	Airc 2	fr Co	· ·	DATE	71.	251 39
		T NO.:	() a /:	1863 J	- TOS	<i>t</i>				
Sample Number	Location		Sample	Type of	Container	Туре	of Preserv	ation	Analys	is Required
		Material	Method			Temp	Chem		ļ	
	ma-10	WITEL	BAILES	40 A	k 104	(Œ	NSI			
νC·12·13									-	
ucc-10-12						11			1	
Lice-3D-1A	WCC-3D									
NCC-32-13	1									
NCC-3D-18						\bot				
WCC-30-15	V		 			++-	ļ		+	
NCC-12D-1A			 		·	+	 		+	
xc-120-13			 			+			+	-
vcc-120-12 vcc-120-15		$\overline{}$	+ 1		/	14	1			
WC-107-13										
				<u> </u>	•				<u> </u>	
			<u> </u>							
:			<u> </u>						_	
			<u> </u>	-		+ ,	,			
otal Number of S	Samples Shir	poed: /	Z Sample	r's Signatu	re:	Pho S	1 aid 1			
elinquished By:	24	91		Receiv	eď Bý:	7	· Police	11		Date
Signature	1 Pete	- Glacs			ature ed Name_					- / - /
Printed Name		ICC .			pany			, A		Time
Reason &		* WC								
elinquished By: Signature		allah	, ,		ed By:	Kin	int 1	DI	/	Date
Printed Name	1.615/# 110	+ -A/1	(N)th	Print	Printed Name Kon-13 2017				Time	
CompanyReason	1171)-	(L. poe	rons	Com	pany	4-1				1/ 1/2
				Receiv	ed By:	0.0-	0	,		Date
Signature Kov- 1 / 12			C:on	Cionatura Bak Olsem					- <u>726</u>	
Printed Name 12 / Printed Name Bob Olson Company Company CAS					Time					
Reason	dany				11:42					
elinguished By:					ed By:					Date /
Signature Printed Name					ature ted Name_					- <u>- / </u>
Company					pany					Time
Reason	/ 11 ***	/ 6	0	<u>L</u>						
	/ Handling	/ Storage	vednitewei	LS:	<i>D</i>		1.	11 0		~ .
Special Shipment	T: AI	-4-1	(alhad	س سرد	Tetor (JACSN	$o_{\mathbf{m}}$ 71	4 8	\$ 5 6 6 6	か ん
Special Shipment	r: Ali	staine	Callerd	er or	ietor (JACS.N	on 71	4 8	\$ > es	15 6

September 8, 1989

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Drive Santa Ana, CA 92705

Attn:

Peter Glaesman

JOB NO.

13533

WEST COAST ANALYTICAL SERVICE, INC.

ANALYTICAL CHEMISTS

Α

LABORATORY REPORT

Samples Received: Fifty-five (55) liquids

Date Received: 8-24-89

Purchase Order No: Proj#: 8941863J Task 1/Douglas Aircraft

The samples were analyzed as follows:

Samples Analyzed

<u>Analysis</u>

Results

Thirteen (13) liquids

Volatile Organics

by EPA 624

Data Sheets

Page 1 of 1

Michael Shelton Senior Chemist B. Michael Hovanec Senior Staff Chemist

9840 Alburtis Avenue • Santa Fe Springs, California 90670 • 213/948-2225

CLIENT: WOODWARD-CLYDE CONSULTANTS

WCAS JOB #: 13533

SAMPLE: WCC-1D-2A

DATE RECEIVED: 08/24/89 RUN NUMBER: 13533V16

DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 5ML DATE ANALYZED: 09/06/89 MATRIX: WATER

		·	
CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	 מא	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	ī.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5:
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	i.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	17.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156 -60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	· · · · · · · · · · · · · · · · · · ·	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13 - 1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	1.	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	2.	. 1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT: WOODWARD-CLYDE CONSULTANTS

WCAS JOB #: 13533

SAMPLE: WCC-1D-2A

UNITS: UG/L (PPB) **APPROXIMATE**

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-1S-2A

WCAS JOB #: 13533

DATE RECEIVED: 08/24/89 RUN NUMBER: 13533V17
DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 150UL
DATE ANALYZED: 09/06/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	· · · ·
67-64-1	ACETONE	 ND	200.
71-43-2	BENZENE	ND	30.
75-27-4	BROMODICHLOROMETHANE	ND	30.
75-25-2	BROMOFORM	ND	30.
74-83-9	BROMOMETHANE	ND	200.
78-93-3	2-BUTANONE (MEK)	ND	200.
75-15-0	CARBON DISULFIDE	ND	30.
56-23-5	CARBON TETRACHLORIDE	ND	30.
108-90-7	CHLOROBENZENE	ИD	30.
75-00 - 3	CHLOROETHANE	ND	200.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	300.
67-66-3	CHLOROFORM	ND	30.
74-87-3	CHLOROMETHANE	ND	200.
108-41-8	CHLOROTOLUENE	ND	30.
124-48-1	DIBROMOCHLOROMETHANE	ND	30.
95-50-1	1,2-DICHLOROBENZENE	ND	30.
541-73-1	1,3-DICHLOROBENZENE	ND	30.
106-46-7	1,4-DICHLOROBENZENE	ND	30.
75-34-3	1,1-DICHLOROETHANE	ND	30.
107-06-2	1,2-DICHLOROETHANE	ND	30.
75-35-4	1,1-DICHLOROETHYLENE	1500.	30.
156-59-4	CIS-1,2-DICHLOROETHYLENE	41.	30.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	30.
78-87-5	1,2-DICHLOROPROPANE	ND	30.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	30.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	30.
100-41-4	ETHYLBENZENE	ND	30.
106-93-4	ETHYLENE DIBROMIDE	ND	30.
76-13-1	FREON-TF	ND	30.
119-78-6	2-HEXANONE	ND	200.
75-09-2	METHYLENE CHLORIDE	ND	200.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	200.
100-42-5	STYRENE	ND	30.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	30.
127-18-4	TETRACHLOROETHYLENE	ND	30.
109-99-9	TETRAHYDROFURAN	ND	200.
108-88-3	TOLUENE	ND	30.
71-55-6	1,1,1-TRICHLOROETHANE	ND	30.
79-00-5	1,1,2-TRICHLOROETHANE	ND	30.
79-01-6	TRICHLOROETHYLENE	2800.	30.
75-69-4	TRICHLOROFLUOROMETHANE	ND	30.
108-05-4	VINYL ACETATE	ND	200.
75-01-4	VINYL CHLORIDE	ND	200.
95-47-6	TOTAL XYLENES	ND	30.

CLIENT: WOODWARD-CLYDE CONSULTANTS WCAS JOB #: 13533

SAMPLE: WCC-1S-2A

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS

WCAS JOB #: 13533

SAMPLE: WCC-2S-2A

DATE RECEIVED: 08/24/89
DATE EXTRACTED: 09/06/89
DATE ANALYZED: 09/06/89

RUN NUMBER:

13533V18

SAMPLE AMOUNT: 5ML MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240)

UNITS: UG/L (PPB)

	(==== === , ==== ,	ONITS: OG/L (PPB)	
CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	1.
110-75-8	2-CHLOROETHYLVINYL ETHER		5.
67-66-3	CHLOROFORM	ND	10.
74-87-3	CHLOROMETHANE	ND	1.
108-41-8	CHLOROTOLUENE	ND	5.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-01-5		ND	1.
100-41-4	TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE	ND	1.
106-93-4		ND	1.
76-13-1	ETHYLENE DIBROMIDE	ND	1.
	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	3.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-2S-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-3D-2A

WCAS JOB #: 13533

DATE RECEIVED: 08/24/89 DATE EXTRACTED: 09/06/89 DATE ANALYZED: 09/06/89

RUN NUMBER: 13533V19 SAMPLE AMOUNT: 500UL MATRIX: WATER

VOLATILE ORG	ANICS (EPA 624/8240)	UNITS: UG/L	(PPB)
CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	ND	50.
71-43-2	BENZENE	ND	10.
71-43-2 75-27-4	BROMODICHLOROMETHANE	ИD	10.
75-25-2	BROMOFORM	ND	10.
74-83-9	BROMOMETHANE	ND	50.
78-93 - 3	2-BUTANONE (MEK)	ND	50.
75-15-0	CARBON DISULFIDE	ND	10.
56-23-5	CARBON TETRACHLORIDE	ND	10.
108-90-7	CHLOROBENZENE	ND	10.
75-00-3	CHLOROETHANE	ND	50.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	100.
67-66-3		ND	10.
74-87-3		ND	50.
108-41-8		ND	10.
124-48-1	DIBROMOCHLOROMETHANE	ND	10.
95 - 50 - 1	1,2-DICHLOROBENZENE	ND	10.
541-73-1	1,3-DICHLOROBENZENE	ND	10.
106-46-7	1,4-DICHLOROBENZENE	ND	10.
75-34 -3	1,1-DICHLOROETHANE	ND	10.
107-06-2	1,2-DICHLOROETHANE	ND	10.
75-35 -4	1,1-DICHLOROETHYLENE	ND	10.
156-59-4		ND	10.
156-60-5		ND	10.
78-87 -5	1,2-DICHLOROPROPANE	ND	10.
10061 -01-5 10061 -02-6	CIS-1,3-DICHLOROPROPENE	ND	10.
		ND	10.
3 7-41-4	ETHYLBENZENE	ND	10.
-93-4	ETHYLENE DIBROMIDE	ND	10.
13-1	FREON-TF	ND	10.
119-78-6	2-HEXANONE	ND	50.
75-09-2		ND	50.
	4-METHYL-2-PENTANONE (MIBK)	ND	50.
100-42-5		ND	10.
	1,1,2,2-TETRACHLOROETHANE	ND	,10.
127-18-4	TETRACHLOROETHYLENE	ND	10.
109-99-9	TETRAHYDROFURAN	ND	50.
108-88-3	TOLUENE	ND	10.
71-55-6	1,1,1-TRICHLOROETHANE	32.	10.
79-00-5	1,1,2-TRICHLOROETHANE	ND	10.
79-01-6	TRICHLOROETHYLENE	ND	10.
75-69-4	TRICHLOROFLUOROMETHANE	ND	10.
108-05-4	VINYL ACETATE	ND	50.
75-01-4	VINYL CHLORIDE	ND	50.
95-47-6	TOTAL XYLENES	ND	10.

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-3D-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-3S-2A

WCAS JOB #: 13533

RUN NUMBER: 13533V20

DATE RECEIVED: 08/24/89 DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 5UL DATE ANALYZED: 09/06/89 MATRIX: WATER

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5000.
71-43-2	BENZENE	ND	1000.
75-27-4	BROMODICHLOROMETHANE	ND	1000.
75-25-2	BROMOFORM	ND	1000.
74-83-9	BROMOMETHANE	ND	5000.
78-93 -3	2-BUTANONE (MEK)	ND	5000.
75-15-0	CARBON DISULFIDE	ND	1000.
56-23-5	CARBON TETRACHLORIDE	ND	1000.
108-90-7	CHLOROBENZENE	ND	1000.
75-00-3	CHLOROETHANE	ND	5000.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10000.
67-66-3	CHLOROFORM	ND	1000.
74-87 - 3	CHLOROMETHANE	ND	5000.
108-41-8	CHLOROTOLUENE	ND	1000.
124-48-1	DIBROMOCHLOROMETHANE	ND	1000.
95-50-1	1,2-DICHLOROBENZENE	ND	1000.
541-73-1	1,3-DICHLOROBENZENE	ND	1000.
106-46-7	1,4-DICHLOROBENZENE	ND	1000.
75-34 -3	1,1-DICHLOROETHANE	ND	1000.
107-06-2	1,2-DICHLOROETHANE	ND	1000.
75-35-4	1,1-DICHLOROETHYLENE	56000.	1000.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1000.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1000.
78-87-5	1,2-DICHLOROPROPANE	ND	1000.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1000.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1000.
100-41-4	ETHYLBENZENE	ND	1000.
106-93-4	ETHYLENE DIBROMIDE	ND	1000.
76-13-1	FREON-TF	ND	1000.
119-78-6	2-HEXANONE	ND	5000.
75-09 -2	METHYLENE CHLORIDE	ND	5000.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5000.
100-42-5	STYRENE	ND	1000.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1000.
127-18-4	TETRACHLOROETHYLENE	ND	1000.
109-99-9	TETRAHYDROFURAN	ND	5000.
108-88-3	TOLUENE	56000.	1000.
71-55-6	1,1,1-TRICHLOROETHANE	78000.	1000.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1000.
79-01-6	TRICHLOROETHYLENE	6000.	1000.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1000.
108-05-4	VINYL ACETATE	ND	5000.
75-01-4	VINYL CHLORIDE	ND	5000.
95-47-6	TOTAL XYLENES	ND	1000.

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-3S-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

10000. VOA 1 UNIDENTIFIED COMPOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-3S-2R

WCAS JOB #: 13533

13533V21

DATE RECEIVED: 08/24/89 RUN NUMBER: DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 5ML

DATE ANALYZED: 09/06/89 MATRIX: WATER

VOLATILL ONC	OURITHE ONORATED (BIN ODA) ODAO)		G/ D (IID)	
CAS #	COMPOUND	CONCENTRATION	DET LIMIT	
67-64-1	ACETONE	ND	5.	
71-43-2	BENZENE	ND	1.	
75-27-4	BROMODICHLOROMETHANE	ND	1.	
75-25-2	BROMOFORM	ND	1.	
74-83-9	BROMOMETHANE	ND	5.	
78-93-3	2-BUTANONE (MEK)	ND	5.	
75-15-0	CARBON DISULFIDE	ND	1.	
56-23-5	CARBON TETRACHLORIDE	ND	1.	
108-90-7	CHLOROBENZENE	ND	1.	
75-00-3	CHLOROETHANE	ND	5.	
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.	
67-66-3	CHLOROFORM	ND	1.	
74-87-3		ND	5.	
108-41-8		ND	1.	
124-48-1	DIBROMOCHLOROMETHANE	ND	i.	
95-50-1	1,2-DICHLOROBENZENE	ND	i.	
541-73-1	1,3-DICHLOROBENZENE	ND	ī.	
106-46-7	1,4-DICHLOROBENZENE	ND	i.	
75-34-3	1,1-DICHLOROETHANE	ND	1.	
107-06-2	1,2-DICHLOROETHANE	ND	î.	
75-35-4	1,1-DICHLOROETHYLENE	ND	i.	
156-59-4	·	ND	1.	
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.	
78-87 - 5	1,2-DICHLOROPROPANE	ND	1.	
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.	
10061-01-5	TRANS-1,3-DICHLOROPROPENE	ND	1.	
100-41-4	ETHYLBENZENE	ND	1.	
106-93-4	ETHYLENE DIBROMIDE	ND	1.	
	·	ND	1.	
76-13-1	FREON-TF		5.	
119-78-6	2-HEXANONE	ND		
75-09-2	METHYLENE CHLORIDE	ND	5.	
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.	
100-42-5	STYRENE	ND	1.	
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.	
127-18-4	TETRACHLOROETHYLENE	ND	1.	
109-99-9	TETRAHYDROFURAN	ND	5.	
108-88-3	TOLUENE	ND	1.	
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.	
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.	
79-01-6	TRICHLOROETHYLENE	ND	1.	
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.	
108-05-4	VINYL ACETATE	ND	√5 .	
75-01-4	VINYL CHLORIDE	ND	5.	
95-47-6	TOTAL XYLENES	ND	1.	

CLIENT: WOODWARD-CLYDE CONSULTANTS

WCAS JOB #: 13533

SAMPLE: WCC-3S-2R

UNITS: UG/L (PPB)

COMPOUND NAME

APPROXIMATE FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-4S-2A

WCAS JOB #: 13533

RUN NUMBER: 13533V22

DATE RECEIVED: 08/24/89 DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 1ML DATE ANALYZED: 09/06/89 MATRIX: WATER

	·		
CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	30.
71-43-2	BENZENE	ND	5.
75-27-4	BROMODICHLOROMETHANE	ND	5.
75-25-2	BROMOFORM	ND	5.
74-83-9	BROMOMETHANE	ND	30.
78-93-3	2-BUTANONE (MEK)	ND	30.
75-15-0	CARBON DISULFIDE	ND	5.
56-23-5	CARBON TETRACHLORIDE	ND	5.
108-90-7	CHLOROBENZENE	ND	5.
75-00-3	CHLOROETHANE	ND	30.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	50.
67-66-3	CHLOROFORM	ND	5·.
74-87-3	CHLOROMETHANE	ND	30.
108-41-8	CHLOROTOLUENE	ND	5.
124-48-1	DIBROMOCHLOROMETHANE	ND	5.
95-50-1	1,2-DICHLOROBENZENE	ND	5.
541-73-1	1,3-DICHLOROBENZENE	ND	5.
106-46-7	1,4-DICHLOROBENZENE	ND	5.
75-34 -3	1,1-DICHLOROETHANE	. ND	5.
107-06-2	1,2-DICHLOROETHANE	ND	5.
75-35-4	1,1-DICHLOROETHYLENE	360.	5.
156-59-4	CIS-1,2-DICHLOROETHYLENE	15.	5.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	5.
78-87-5	1,2-DICHLOROPROPANE	ND	5.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	5.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	5.
100-41-4	ETHYLBENZENE	ND	5.
106-93-4	ETHYLENE DIBROMIDE	ND	5.
76-13-1	FREON-TF	ND	5.
119-78-6	2-HEXANONE	ND	30.
75-09-2	METHYLENE CHLORIDE	ND	30.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	30.
100-42-5	STYRENE	ND	5.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	5.
127-18-4	TETRACHLOROETHYLENE	ND	5.
109-99-9	TETRAHYDROFURAN	ND	30.
108-88-3	TOLUENE	ND	5.
71-55-6	1,1,1-TRICHLOROETHANE	7.	5.
79-00-5	1,1,2-TRICHLOROETHANE	ND	5.
79-01-6	TRICHLOROETHYLENE	410.	5.
75-69-4	TRICHLOROFLUOROMETHANE	ND	5.
108-05-4	VINYL ACETATE	ND	30.
75-01-4	VINYL CHLORIDE	ND	30.
95-47-6	TOTAL XYLENES	ND	5.

CLIENT: WOODWARD-CLYDE CONSULTANTS

WCAS JOB #: 13533

SAMPLE: WCC-4S-2A

UNITS: UG/L (PPB)

COMPOUND NAME

APPROXIMATE FRACTION CONCENTRATION

1 UNIDENTIFIED COMPOUND

VOA

300.

CLIENT: WOODWARD-CLYDE CONSULTANTS

VOLATILE ORGANICS (EPA 624/8240)

WCAS JOB #: 13533

71-55-6

79-00**-**5

79-01-6

75-69-4

108-05-4

75-01-4

95-47-6

1,1,1-TRICHLOROETHANE

1,1,2-TRICHLOROETHANE

TRICHLOROFLUOROMETHANE

TRICHLOROETHYLENE

VINYL ACETATE

TOTAL XYLENES

VINYL CHLORIDE

SAMPLE: WCC-5S-2A

UNITS: UG/L (PPB)

ND

ND

ND

ND

ND

ND

12.

DATE RECEIVED: 08/24/89 RUN NUMBER: 13533V29
DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 5ML

DATE ANALYZED: 09/06/89 MATRIX: WATER

CAS	#	COMPOUND	CONCENTRATION	DET LIMIT
67-6		ACETONE	ND	5.
71-4	3-2	BENZENE	ND	1.
75-2	27-4	BROMODICHLOROMETHANE	ND	1.
75-2	25-2	BROMOFORM	ND	1.
74-8	3-9	BROMOMETHANE	ND	5.
78-9	3-3	2-BUTANONE (MEK)	ND	5.
75-1	L5 - 0	CARBON DISULFIDE	ND	1.
56-2		CARBON TETRACHLORIDE	ND	1.
108-	-90 - 7	CHLOROBENZENE	ND	1.
75-0	00-3	CHLORGETHANE	ND	5.
110-	-75 - 8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-6	66-3	CHLOROFORM	ND	1.
74-8	37-3	CHLOROMETHANE	ND	5.
108-	-41 - 8	CHLOROTOLUENE	ND	1.
124-	-48-1	DIBROMOCHLOROMETHANE	ND	1.
	50 -1	1,2-DICHLOROBENZENE	ЙD	1.
541-	-73 - 1	1,3-DICHLOROBENZENE	ND	1.
106-	-46 - 7	1,4-DICHLOROBENZENE	ND	1.
75-3	34-3	1,1-DICHLOROETHANE	ND	1.
107-	-06-2	1,2-DICHLOROETHANE	ND	1.
75-3	35-4	1,1-DICHLOROETHYLENE	ND	1.
156-	-59-4	CIS-1,2-DICHLOROETHYLENE	4.	1.
156-	-60 - 5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-8	37 - 5	1,2-DICHLOROPROPANE	ND	1.
1006	51-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
1006	51-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-	-41-4	ETHYLBENZENE	ND	1.
106-	-93 - 4	ETHYLENE DIBROMIDE	ND	1.
76-1	13-1	FREON-TF	ND	1.
119-	-78 - 6	2-HEXANONE	ND	5.
75-0	09-2	METHYLENE CHLORIDE	ND	5.
108-	-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-	-42 - 5	STYRENE	ND	1.
79-3	34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
	-18-4	TETRACHLOROETHYLENE	ND	1.
109-	-99-9	TETRAHYDROFURAN	ND	5.
108-	-88-3	TOLUENE	ND	1.

1.

1.

1.

1.

5.

5.

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-5S-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB) APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-5S-2R

WCAS JOB #: 13533

DATE RECEIVÉD: 08/24/89

DATE EXTRACTED: 09/06/89 DATE ANALYZED: 09/06/89

RUN NUMBER: 13533V24

SAMPLE AMOUNT: 5ML MATRIX: WATER

UNITS: UG/L (PPB) VOLATILE ORGANICS (EPA 624/8240)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
		ND	. 5.
67-64-1	ACETONE	ND	1.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	⊥. 5.
74-83-9	BROMOMETHANE		
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00 - 3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50 - 1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34 -3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156 -60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87 -5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5		ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01 - 6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	ī.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINIL ACCIATE VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
93-47-0	TOTAL VITHILLO	ND	-•

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-5S-2R

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-7S-2A

WCAS JOB #: 13533

DATE RECEIVED: 08/24/89
DATE EXTRACTED: 09/06/89
DATE ANALYZED: 09/06/89

RUN NUMBER: 13533V25 SAMPLE AMOUNT: 200UL MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

CAS #	COMPOUND	CONCENTRATION			
67-64-1	ACETONE	ND	100.		
71-43-2	BENZENE	ND	30.		
75-27-4	BROMODICHLOROMETHANE	ND	30.		
75 - 25 -2	BROMOFORM	ND	30.		
74-83-9	BROMOMETHANE	ND	100.		
78 - 93 - 3	2-BUTANONE (MEK)	ND	100.		
75-15-0	CARBON DISULFIDE	ND	30.		
56-23 - 5	CARBON TETRACHLORIDE	ND	30.		
108-90-7	CHLOROBENZENE	ND	30.		
75-00-3	CHLOROETHANE	ND	100.		
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	300.		
67-66-3	CHLOROFORM	ND,	30.		
74-87-3	CHLOROMETHANE	ND	100.		
108-41-8	CHLOROTOLUENE	ND	30.		
124-48-1	DIBROMOCHLOROMETHANE	ND	30.		
95-50-1	1,2-DICHLOROBENZENE	ND	30.		
541-73-1	1,3-DICHLOROBENZENE	ND	30.		
106-46-7	1,4-DICHLOROBENZENE	ND	30.		
75-34-3	1,1-DICHLOROETHANE	ND	30.		
107-06-2	1,2-DICHLOROETHANE	ND	30.		
75-35-4	1,1-DICHLOROETHYLENE	1100.	30.		
156-59-4	CIS-1,2-DICHLOROETHYLENE	31.	30.		
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	30.		
78-87 - 5	1,2-DICHLOROPROPANE	ND	30.		
10061-01-5	·	ND	30.		
10061-02-6		ND	30.		
100-41-4	ETHYLBENZENE	ND	30.		
106-93-4	ETHYLENE DIBROMIDE	ND	30.		
76-13-1	FREON-TF	ND	30.		
119-78-6	2-HEXANONE	ND	100.		
75-09-2	METHYLENE CHLORIDE	ND	100.		
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	100.		
100-42-5	STYRENE	ND	30.		
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	30.		
127-18-4	TETRACHLOROETHYLENE	ND	30.		
109-99-9	TETRAHYDROFURAN	ND	100.		
108-88-3	TOLUENE	ND	30.		
71-55-6	1,1,1-TRICHLOROETHANE	66.	30.		
79-00-5	1,1,2-TRICHLOROETHANE	ND	30.		
79-00-5 79-01 - 6	TRICHLOROETHYLENE	1400.	30.		
75-69 -4	TRICHLOROFLUOROMETHANE	ND	30.		
108-05-4	VINYL ACETATE	ND	100.		
75-01-4	VINIL ACEIATE VINYL CHLORIDE	ND	100.		
75-01-4 95-47-6	TOTAL XYLENES	ND	30.		
73-4/-6	TOTAL VITCHES	ND	٠٠٠.		

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-7S-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS

WCAS JOB #: 13533

SAMPLE: WCC-8S-2A

DATE RECEIVED: 08/24/89 RUN NUMBER: 13533V26
DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 1ML
DATE ANALYZED: 09/06/89 MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	30.
71-43-2	BENZENE	ND	5.
75-27-4	BROMODICHLOROMETHANE	ND	5.
75-25-2	BROMOFORM	ND	5.
74-83-9	BROMOMETHANE	ND	30.
78-93-3	2-BUTANONE (MEK)	ND	30.
75-15-0	CARBON DISULFIDE	ND	5.
56-23 - 5	CARBON TETRACHLORIDE	ND	5.
108-90-7	CHLOROBENZENE	ND	5.
75-00-3	CHLOROETHANE	ND	30.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	50.
67-66-3	CHLOROFORM	ND	5.
74-87-3	CHLOROMETHANE	ND	30.
108-41-8	CHLOROTOLUENE	ND	5.
124-48-1	DIBROMOCHLOROMETHANE	ND	5.
95-50-1	1,2-DICHLOROBENZENE	ND	5.
541-73-1	1,3-DICHLOROBENZENE	ND	5.
106-46-7	1,4-DICHLOROBENZENE	ND	5.
75-34-3	1,1-DICHLOROETHANE	ND	5.
107-06-2	1,2-DICHLOROETHANE	ND	5.
75-35-4	1,1-DICHLOROETHYLENE	820.	5.
156-59-4	CIS-1,2-DICHLOROETHYLENE	7.	5.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	5.
78-87-5	1,2-DICHLOROPROPANE	ND	5.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	5.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	5.
100-41-4	ETHYLBENZENE	ND	5.
106-93-4	ETHYLENE DIBROMIDE	· ND	5.
76-13-1	FREON-TF	ND	5.
119-78-6	2-HEXANONE	ND	30.
75-09-2	METHYLENE CHLORIDE	ND	30.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	30.
100-42-5	STYRENE	. ND	5.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	5.
127-18-4	TETRACHLOROETHYLENE	ND	5.
109-99-9	TETRAHYDROFURAN	ND	30.
108-88-3	TOLUENE	ND	5.
71-55-6	1,1,1-TRICHLOROETHANE	130.	5.
79-00-5	1,1,2-TRICHLOROETHANE	ND	5.
79-01-6	TRICHLOROETHYLENE	430.	5.
75-69-4	TRICHLOROFLUOROMETHANE	ND	5.
108-05-4	VINYL ACETATE	ND	30.
75-01-4	VINYL CHLORIDE	ND	30.
95-47-6	TOTAL XYLENES	ND	5.

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-85-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-10S-2A

WCAS JOB #: 13533

DATE RECEIVED: 08/24/89 RUN NUMBER: 13533V27
DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 09/06/89 MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	î.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	4.	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8		ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	4.	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	i.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
	CIS-1,3-DICHLOROPROPENE	ND	î.
151-02-6		ND	i.
100-41-4	ETHYLBENZENE	ND	1.
:-93-4	ETHYLENE DIBROMIDE	ND	1.
13-1	FREON-TF	ND	1.
· ~3-6	2-HEXANONE	ND	5.
15-09 -2	METHYLENE CHLORIDE	ND	5.
	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	,	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	81.	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
		115	* •

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-10S-2A

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-10S-2R

WCAS JOB #: 13533

DATE RECEIVED: 08/24/89

RUN NUMBER: 13533V28 DATE EXTRACTED: 09/06/89 SAMPLE AMOUNT: 5ML DATE ANALYZED: 09/06/89 WATER MATRIX:

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUEN	ND	1.
124-48-1	DIBROMOCHLOR: THANE	ND	1.
95-50 - 1	1,2-DICHLOROE ZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13 -1	FREON-TF	ND	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	ī.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.

CLIENT: WOODWARD-CLYDE CONSULTANTS

SAMPLE: WCC-10S-2R

WCAS JOB #: 13533

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME FRACTION CONCENTRATION

1 NONE FOUND

Data Reporting Qualifiers

- Value If the result is a value greater than or equal to the Detection Limit (DL), the value is reported.
- ND Indicates that the compound was analyzed for but not detected. The minimum DL for the sample with the ND is reported based on necessary concentration or dilution actions.
- TR Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified DL but greater than zero.

Woodward-Clyde Consultants

CHAIN OF CUSTODY RECORD

SHIPMENT NO.:____

PROJECT NAME:	Dugla- Acrafi Co. (C6)	
PROJECT NO.:	8941863 J -TUSK 1	

Sample Number	Location	Type of	Sample	Type of Container,	Type	of Preservation	Analysis Required *
Sample Number	Location	Material	Method	40 mg VOA	Temp	Chemical	7 Allarysis Heddines
(vci-1=-2A	1.160		2 =0				
1,c-15-2A	WC2-15	777	131/120	BLECTEE	ICE	NENE	
1000-15-23		المحمرا		4 🗸			1
10070	7			1 07 8 21			
11cc-15-2-				4 02 \$ glass			1
wcc-15-2R	$Y \mid V$	l !!		40 M VOA			
wcc-15-25				4			1
		 			 		
1VCC-25-2A	wc.xs					<u> </u>	
11/CC-25-2B	l- 1	'	1	4)			1 1
				4 or dass			
WCC-25-2C	<u> </u>	 			 	 	
WCC-25-2R	·			AD AN UWA			
WCC-25-25	T T.			1 4			ļ
	<i>}1</i>	 	 	 	 		
WCC-35-2A	14cc-35			//	1		
WCC-35-2B	1			V 1			ļ
	1 1			4 02. 9 Glass			
WCC-35-20		 	 		 	 	
:vcc-35-2R	1 1	1[AND IN CA			
Wec-35-25	1						
		 	 		 	 	
WCC-45-2A	16CC-45		ļļ				
WCC-45-28	l. 1		1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		
				4 22. sylass			
1,1cc 45=2c		 	 	B 3	+	+	
wcc-45-2R		L	<u> </u>	40 MJ. VOA	1/	<u> </u>	
wcc-45-25		V	V	1 √ √ 8	Y	J. V	
	<u> </u>	<u> </u>	Sample		HAR 2	War Land	
Total Number of	Samples Sni	ppea:	Sample				· · · · · · · · · · · · · · · · · · ·
Relinquished By:	(20)	Yan-		Received By:	7	1/100	Date
Signature				Signature	1.1.	1 com	<u> </u>
Printed Name	1 124	- Ghe	<u>sman</u>	Printed Name	1-1	11/4/6	Time
				Company		9-1-	Sime
Company Reason	ex-	it deli	10- +, wc	<u>5.</u>		,	
				Pagainad Phr.	1	6 1 11	Date
Relinquished By: Signature	\geq	>== \$		Received by.	VIaus	(lacount)	5124139
Signature	/			Signature	1000	0 - / //	<u> </u>
Printed Name Company	1cm	12-1-1		Received By: Signature Printed Name	1 /-	Gecle, wall	Time
Company	/# - /			Company	' +1/C	//S	11.0070
Reason						, -	
Relinquished By:				Received By:			Date
Signature				Signature			/. /
Printed Name				Printed Name			<u> </u>
Company			-	Company			Time
1							
Reason							Data
Relinquished By:				Received By:			Date
Signature				Signature			
Printed Name				Printed Name			Time
Company				Company			
Reason				<u>L</u>			<u> </u>
Special Shipment			Requirement	is:			
Shecial Stubingtiff	, mananing	, Clorage i		- ·			
1						h 1	3533
1	•						- 5 - 5
1							
The same			orization *	proceed with analys	ie		
	ses not con	stitute autr	וטוובסגוטוו נו	PIOCEEN WILL GUGLYS			

BOE-C6-0092350

Woodward-Clyde Consultants

CHAIN OF CUSTODY RECORD

SHIPMENT NO .: ___

Sample Number	Location	Type of	Sample	Type of	Container	Ţ	ype	of Preserva	tion	Analysis	Required *
Sample Number	Location	Material	Method	1,000	40milion	Ter	np	Chemi	cal		
WCC-55-2A	(NCC-55	ALO WATE	R PAILER	-32	55 176	10	ت	NON	£		
WCC-55-28		1		3							
Wcc-55-20	1 1			Agz.	gless						
WCC-55-22				40 2							
wcc-55-25				1							
WCC-75-2A				•							
WCC-75-26	1			J	}						
wcc - 75 - 2c	I . i	h			B 01						
	f - i			gorl	P VOA						
WCE-75 -2R				40 AZ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	-	1				
WCC-75-25	<i>((((((((((</i>	 			1	-					
WCC-85-2A					}	 	 				
MCC- 82-38					3	-	-	· · · · · · · ·		<u> </u>	
MCC-32-30	1 / 6	 		4 02.		├	1			-	
WCC-85-28	F 1	 		40 LL	AW &	├	1				
WCC-35-25					3	-	-			<u> </u>	
WCC-105-2A	1/WCK-105				4	-	ļ			 	
WCC-105-28	<u> </u>				4	ļ	↓				
wcc-65-20				4 02.	J yess D VUA		<u> </u>			ļ	
WCC-105-2R	ļ. <u> </u>	1 .		40, ul	ACV &		ļ			ļ	
WCC - 105 -25		<u> </u>	<u> </u>		78	$\perp V$		V		<u> </u>	
Total Number of S		pped:	Sampler	's Signatu	re: کے	'n2	211	an-			
Relinquished By:	2/-	Air			ed By:	_	12	20, 7	1		Date
Signature		De den	<u> </u>		ature				ر بر	l	51,2010
Printed Name	PET	- <	77.00	_	ted Name pany						Time
Company Reason											8.77
Relinquished By:		i 1		Receiv	red By: Nature	1	<i>(</i>)	1. 0	0		Date
Signature	<	F 34		Sign	ature //	un	<u>LU</u>	deval	C , 11		8/24/89
Printed Name	1000	16		_ Print	ted Name			-1 e/1 (MAI		Time
Company				_ Com	ipany	-	K	15			11:007
Reason				_	D				·		Date
Relinquished By: Signature				1	red By: ature						/ /
Printed Name				_, ,	ted Name						
Company				Com	pany						Time
Reason											
Relinquished By:					ved By:					,	Date
Signature					ature ted Name						
Printed Name					ted Name npany						Time
Company Reason				_	· F = · · · J = · · · · · · ·						
Special Shipment			Requirement	s :							

lo 13533

* Note - This does not constitute authorization to proceed with analysis

LA. OR -0183-421

		Woo	dward-	Clyde Consulta	ants C	SHIPM	MENT NO	o.:
								F_2
	DDO 15/	T MASIE.	Dank	s Aircraft	Ca.	(CG) DATE	8 1	23/89
	PROJEC	CT NO.:	R94186	3.1 - TOSK	1			
Sample Number	Location	Type of		Type of Container		of Preservation	Analy	rsis Required *
10 11		Material	Method RS/LER	40 M VOA	Temp	Chemical	 	
NCC-10-24	i t	WIEX	BICER	M NOA	100	whe	+	
MCC-17-28	7			4 07 01055			 	
ncc-10-20	/				 		+	
wcc-10-28				40 Me VDA	\vdash		 	
wcc-12-25	/ V				 		 	
MCC · 3D - 2A	[\vdash		 	
WCC-3D-2B	1 1			<u> </u>	\vdash			
110-30 -20				4 oz. glass				
wcc-30-2R		<u> </u>		40 Me VOA	 			
UKC-30-25	v V	<u> </u>		V	V	V	 	
					 			
								
				<u>; </u>				
							1	
				,				
,					0	1. 1.	1	
Fotal Number of S	amples Shi	pped:	Sampler	's Signature:	Set	5/00-	<u> </u>	
Relinquished By:	4)/	gia-		Received By:	// +	Zan Par	11	Date
Signature	tor			Signature		2101/10	<u>/</u>	- <u> </u>
Printed Name	م رج	- (3/a)	e - man	Printed Name Company		10-1-1-7		Time
CompanyReason		livery to	WCSS			7		- 6
Relinquished By:				Received By:	Δ	0 /	M	Date
Signature	<	7=11		Received By: Signature	lay	aderia	\mathscr{U}_{-}	- 324 K
Printed Name	<u>Ka</u>	K-1-1-		Printed Name	 	Cede, was	'1 -	Time
Company	/- /			Company	WCF	, -		- 11:004
Reason Relinquished By:				Received By:				Date
Signature				Signature				_ / /
Printed Name				Printed Name				Time
Company				Company				- '''''
Reason				-		·····		D
Relinquished By: Signature				Received By: Signature				Date /
Printed Name				Printed Name				
Company				Company				Time
Reason		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAM						
Special Shipment /	' Handling	/ Storage P	equirement	s:				
						1 T	3538	}
						#V -Z -		7
.			. ,		• _			
Note – This do	es not con	stitute auth	orization to	proceed with analysi	15			LA/OR-0183-
								-WOH-0193-

RECEIVED

September 29, 1989

орт ल वे किंा

WCC-SANTA ANA

WEST COAST **ANALYTICAL**

> SERVICE, INC. ANALYTICAL CHEMISTS

> > Α

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Drive Santa Ana, CA 92705

Attn:

Dr. Alistaire Callender

JOB NO.

13764

LABORATORY REPORT

Thirteen (13) soils Samples Received:

Date Received: 9-25-89

Purchase Order No: Proj#: 8941863J-I/Douglas Aircraft

The samples were analyzed as follows:

Samples Analyzed

<u>Analysis</u>

Results

Three (3) soils

Volatile Organics

by EPA 8240

Data Sheets

Page 1 of 1

B. Michael Hovanec Senior Staff Chemist Northington, Ph.D.

Technical Director

CLIENT: WOODWARD-CLYDE RECEIVEMPLE: 65-8-4

WCAS JOB #: 13764

007 0 4 (91)

DATE RECEIVED: 09/25/89
DATE EXTRACTED: 09/29/89
DATE ANALYZED: 09/29/89
WCC-SANTA ANARUN NUMBER: 13764V4
SAMPLE AMOUNT: 0.1G
MATRIX: SOIL

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/KG (PPB)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT
67-64-1	ACETONE	ND	300.
71-43-2	BENZENE	ND	50.
75-27-4	BROMODICHLOROMETHANE	ND	50.
75-25-2	BROMOFORM	ND	50.
74-83-9	BROMOMETHANE	ND	300.
78-93-3	2-BUTANONE (MEK)	9400.	300.
75-15-0	CARBON DISULFIDE	ND	50.
56-23-5	CARBON TETRACHLORIDE	ND	50.
108-90-7	CHLOROBENZENE	ND	50.
75-00-3	CHLOROETHANE	ND	300.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	500.
67-66-3	CHLOROFORM	ND	50°.
74-87-3	CHLOROMETHANE	ND	300.
108-41-8	CHLOROTOLUENE	ND	50.
124-48-1	DIBROMOCHLOROMETHANE	ND	50.
95-50-1	1,2-DICHLOROBENZENE	ND	50.
541-73-1	1,3-DICHLOROBENZENE	ND	50.
106-46-7	1,4-DICHLOROBENZENE	ND	50.
75-34-3	1,1-DICHLOROETHANE	, ND	50.
107-06-2	1,2-DICHLOROETHANE	ND	50.
75-35-4	1,1-DICHLOROETHYLENE	ND	50.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	50.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	50.
78-87-5	1,2-DICHLOROPROPANE	, ND	50.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	50.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	50.
100-41-4	ETHYLBENZENE	ND	50.
106-93-4	ETHYLENE DIBROMIDE	ND	50.
76-13-1	FREON-TF	ND	50.
119-78-6	2-HEXANONE	ND	300.
75-09-2	METHYLENE CHLORIDE	ND	300.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	8400.	300.
100-42-5	STYRENE	ND	50.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	50.
127-18-4	TETRACHLOROETHYLENE	ND	50.
109-99-9	TETRAHYDROFURAN	ND	300.
108-88-3	TOLUENE	1000.	50.
71-55-6	1,1,1-TRICHLOROETHANE	ND	50.
79-00-5	1,1,2-TRICHLOROETHANE	ND	50.
79-01-6	TRICHLOROETHYLENE	ND	50.
75-69-4	TRICHLOROFLUOROMETHANE	ND	50.
108-05-4	VINYL ACETATE	ND	300.
75-01-4	VINYL CHLORIDE	ND	300.
95-47-6	TOTAL XYLENES	ND	50.

CLIENT: WOODWARD-CLYDE

SAMPLE: 6S-8-4

WCAS JOB #: 13764

UNITS: UG/KG (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 BUTYL CELLOSOLVE

VOA

300.

CLIENT: WOODWARD-CLYDE

WCAS JOB #: 13764

DATE RECEIVED: 09/25/89 RUN NUMBER: 13764V2
DATE EXTRACTED: 09/29/89 SAMPLE AMOUNT: 0.1G
DATE ANALYZED: 09/29/89 MATRIX: SOIL

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/KG (PPB)

SAMPLE: 6S-9-4

CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	ND	300.
71-43-2	BENZENE	ND	50.
75-27-4	BROMODICHLOROMETHANE	ND	50.
75-25-2	BROMOFORM	ND	50.
74-83-9	BROMOMETHANE	ND	300.
78-93-3	2-BUTANONE (MEK)	9200.	300.
75-15-0	CARBON DISULFIDE	ND	50.
56-23-5	CARBON TETRACHLORIDE	ND	50.
108-90-7	CHLOROBENZENE	ND	50.
75-00-3	CHLOROETHANE	ND	300.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	500.
67 - 66-3	CHLOROFORM	ND	50:
7 4- 87-3	CHLOROMETHANE	ND	300.
108-41-8	CHLOROTOLUENE	ND	50.
124-48-1	DIBROMOCHLOROMETHANE	ND	50.
95-50-1	1,2-DICHLOROBENZENE	ND	50.
541-73-1	1,3-DICHLOROBENZENE	ND	50.
106-46-7	1,4-DICHLOROBENZENE	ND	50.
75-34-3	1,1-DICHLOROETHANE	ND	50.
107-06-2	1,2-DICHLOROETHANE	ND	50.
75-35-4	1,1-DICHLOROETHYLENE	240.	50.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	50.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	50.
78-87-5	1,2-DICHLOROPROPANE	ND	50.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	50.
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	50.
100-41-4	ETHYLBENZENE	ND	50.
106-93-4	ETHYLENE DIBROMIDE	ND	50.
76-13-1	FREON-TF	ND	50.
119-78-6	2-HEXANONE	ND	300.
75-09-2	METHYLENE CHLORIDE	ND	300.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	2500.	300.
100-42-5	STYRENE	ND	50.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	50.
127-18-4	TETRACHLOROETHYLENE	ND	50.
109-99-9	TETRAHYDROFURAN	ND	300.
108-88-3	TOLUENE	2200.	50.
71-55-6	1,1,1-TRICHLOROETHANE	ND	50.
79-00-5	1,1,2-TRICHLOROETHANE	ND	50.
79-01-6	TRICHLOROETHYLENE	83.	50.
75-69-4	TRICHLOROFLUOROMETHANE	ND	50.
108-05-4	VINYL ACETATE	ND	300.
75-01-4	VINYL CHLORIDE	ND	300.
95-47-6	TOTAL XYLENES	ND	50.

CLIENT: WOODWARD-CLYDE

WCAS JOB #: 13764

SAMPLE: 65-9-4

UNITS: UG/KG (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 BUTYL CELLOSOLVE

VOA

700.

CLIENT: WOODWARD-CLYDE

WCAS JOB #: 13764

SAMPLE: 6S-10-4

DATE RECEIVED: 09/25/89
DATE EXTRACTED: 09/29/89
DATE ANALYZED: 09/29/89

RUN NUMBER: 13764V1
SAMPLE AMOUNT: 1.0G
MATRIX: SOIL

VOLATILE ORGANICS (EPA 624/8240)

UNITS: UG/KG (PPB)

CAS #	COMPOUND	CONCENTRATION	DET LIMIT		
67-64-1	ACETONE	ND	30.		
71-43-2	BENZENE	ND	5.		
75-27-4	BROMODICHLOROMETHANE	ND	5.		
75-25-2	BROMOFORM	ND	5.		
74-83-9	BROMOMETHANE	ND	30.		
78-93-3	2-BUTANONE (MEK)	550.	30.		
75-15-0	CARBON DISULFIDE	ND	5.		
56-23-5	CARBON TETRACHLORIDE	ND	5.		
108-90-7	CHLOROBENZENE	ND	5.		
75-00-3	CHLOROETHANE	ND	30.		
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	50.		
67-66-3	CHLOROFORM	ND	5°.		
74-87-3	CHLOROMETHANE	ND	30.		
108-41-8	CHLOROTOLUENE	ND	5.		
124-48-1	DIBROMOCHLOROMETHANE	ND	5. 5.		
95-50-1	1,2-DICHLOROBENZENE	ND ND	5. 5.		
541-73-1	1,3-DICHLOROBENZENE				
106-46-7	1,4-DICHLOROBENZENE	ND	5. 5.		
75-34-3	1,1-DICHLOROETHANE	ND			
107-06-2	1,2-DICHLOROETHANE	ND	5.		
75-35-4	1,1-DICHLOROETHYLENE	ND	5.		
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	5.		
156-60-5		ND	5.		
78-87-5	TRANS-1,2-DICHLOROETHYLENE	ND	5.		
10061-01-5	1,2-DICHLOROPROPANE	ND	5.		
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	5.		
10061-02-6	TRANS-1,3-DICHLOROPROPENE	ND	5.		
	ETHYLBENZENE	ND	5.		
106-93-4	ETHYLENE DIBROMIDE	ND	5.		
76-13-1	FREON-TF	ND	5.		
119-78-6	2-HEXANONE	ND	30.		
75-09-2	METHYLENE CHLORIDE	ND	30.		
108-10-1	4-METHYL-2-PENTANONE (MIBK)	330.	30.		
100-42-5	STYRENE	ND	5.		
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	5.		
127-18-4	TETRACHLOROETHYLENE	ND	5.		
109-99-9	TETRAHYDROFURAN	ND	30.		
108-88-3	TOLUENE	150.	5.		
71-55-6	1,1,1-TRICHLOROETHANE	ND	5.		
79-00-5	1,1,2-TRICHLOROETHANE	ND	5.		
79-01 - 6	TRICHLOROETHYLENE	7.	5.		
75-69-4	TRICHLOROFLUOROMETHANE	ND	5.		
108-05-4	VINYL ACETATE	ND	30.		
75-01-4	VINYL CHLORIDE	ND	30.		
95-47-6	TOTAL XYLENES	ND	5.		
	, , 	n.b	٠.		

CLIENT:

WOODWARD-CLYDE

WCAS JOB #: 13764

SAMPLE: 6S-10-4

UNITS: UG/KG (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

Data Reporting Qualifiers

- Value If the result is a value greater than or equal to the Detection Limit (DL), the value is reported.
- ND Indicates that the compound was analyzed for but not detected. The minimum DL for the sample with the ND is reported based on necessary concentration or dilution actions.
- TR Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified DL but greater than zero.

Woodward-Clyde Consultants

SHIPME T NO .: ___

OCT Q 4 in-

CHAIN OF CUSTODY RECORD

PAGE____OF_____

WCC-SANTA ANA

PROJECT NAME: DOUGLAS A. RCRAFT Co. DATE 9 134789

· 	PROJEC			× 43 1,			·	
Sample Number	Location	Type of	Sample	Type of Container	Туре	of Preservation	Analysis	Required *
. Jampic Hallidel	2000000	Material	Method	., p. 0. 30	Temp	Chemical		- 1
- 16	101-65	70.6		7 65-75 TUBE	166	NUME	1.)-	<u> </u>
1. 2. 7. 14						i	1	
1				i i i i i i i i i i i i i i i i i i i			;	
, <u>, , , , , , , , , , , , , , , , , , </u>								· · · · · · · · · · · · · · · · · · ·
 		· · · · · · · · · · · · · · · · · · ·				 		
<u> </u>							 	
12 . 4	! !	1					!	
7 4				i		1		
- 4 - 7	:	1		1		İ	V	<u></u>
· 4-4							134	124
+ 3	!							· · · · · · · · · · · · · · · · · · ·
	 	 			 	t i	E.).	8245
1_4	 	1	 		 		=	-7-6
1 1/1 - LL		<u> </u>	 	<u> </u>	 	1 1/		
1-1-11-4	·V	*		<u> </u>		<u> </u>	1. 1	
							ļ	
					<u> </u>		<u> </u>	
•	 							
, 	 	ļ			-			
	 		-		 	 	-	
·	ļ		<u> </u>		 	+	+	
	<u> </u>	<u> </u>			<u></u>	<u></u>		
Total Number of	Samples Shi	pped: 📝	Sampler	's Signature: (人に)		Francisco		
				Received By:				Date
Signature	11.	7 -41		1 6' .				_/_/
Printed Name		,		Signature Printed Name				Time
Company	,, , , , , , , , , , , , , , , , , , ,	·		Company				·.
Reason		<u> </u>			1: 1	• ;		Date
Relinquished By:		1	,	Received By:	1 lar	rell		/ /
Signature Printed Name			; 4	Printed Name	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Company				Printed Name L Company	14	1-11.961		Time
Reason								
		i		Received By:	1	1		Date
Relinquished By: Signature	11 21-1:1	(Signature/	11 au	adema.		<u> </u>
Printed Name				Printed Name	1		b	- Time
Company	1 11/	<u> 7/-</u>	<u>. </u>	Company	<u> </u>	' /		
Reason	. ۱۱ م		11					
Relinquished By:				Received By:				Date
Signature				Signature				
Printed Name				Printed Name Company				Time
Company			<u></u>	- Company				·
Reason	/ 11	/ 64 !	2		***			
Special Shipment	/ Handling	/ Storage 1	requirement	5.		. A		
						w13764		
1						N. J.		
* Note - This de	bes not con	stitute auth	norization to	proceed with analys	is			

LA/OR-0183-421

October 18, 1989

RECEIVED

WOODWARD-CLYDE CONSULTANTS 203 N. Golden Circle Dr. Santa Ana, CA 92705 OCT 1 9 (SEC)

WCC-SANTA ANA

WEST COAST ANALYTICAL SERVICE, INC.

Attn:

Dr. Alistaire Callender

JOB NO.

13882

LABORATORY REPORT

Samples Received: Three (3) liquids in quadruplicate

Date Received: 10-9-89

Date Released for Analysis: 10-11-89

Purchase Order No: Proj#: 8941863J/Douglas Aircraft

The samples were analyzed as follows:

Samples Analyzed

<u>Analysis</u>

Results

Three (3) liquids

Volatile Organics

by EPA 624

Data Sheets

Page 1 of 1

Michael Shelton Senior Chemist J. Northington, Ph.D. Technical Director

9840 Alburtis Avenue • Santa Fe Springs, California 90670 • 213/948-2225 • FAX 213/948-5850

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-6S-1A

WCAS JOB #: 13882

DATE RECEIVED: 10/09/89 DATE EXTRACTED: 10/17/89 RUN NUMBER: 13882V5 SAMPLE AMOUNT: 5ML DATE ANALYZED: 10/17/89 MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

	(=====	ONITS: UG/L (PPB)			
CAS #	COMPOUND	CONCENTRATION	DET LIMIT		
67-64-1	ACETONE	**************************************			
71-43-2	BENZENE	ND	5.		
75-27-4	BROMODICHLOROMETHANE	ND	1.		
75-25-2	BROMOFORM	ND	1.		
74-83-9	BROMOMETHANE	ND	1.		
78-93-3	2-BUTANONE (MEK)	ND	5.		
75-15-0	CARBON DISULFIDE	ND	5.		
56-23-5	CARBON TETRACHLORIDE	ND	1.		
108-90-7	CHLOROBENZENE	ND	1.		
75-00-3	CHLOROETHANE	ND	<u>1</u> .		
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	5.		
67-66-3	CHLOROFORM	ND	10.		
74-87-3	CHLOROMETHANE	ND	1.		
108-41-8	CHLOROTOLUENE	ND	5.		
124-48-1	DIBROMOCHLOROMETHANE	ND	1.		
95-50-1	1,2-DICHLOROBENZENE	ND	1.		
541-73-1	1,3-DICHLOROBENZENE	ND	1.		
106-46-7	1,4-DICHLOROBENZENE	ND	1.		
75-34-3	1,1-DICHLOROETHANE	ND	1.		
107-06-2	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	4.	1.		
75-35-4	1,1-DICHLOROETHYLENE	3.	1.		
156-59-4	CTS-1 3-DICHIODORMULTUR	210.	1.		
156-60-5	CIS-1,2-DICHLOROETHYLENE	12.	1.		
78-87-5	TRANS-1,2-DICHLOROETHYLENE	7.	1.		
10061-01-5	1,2-DICHLOROPROPANE	ND	1.		
10061-02-6	CIS-1,3-DICHLOROPROPENE	ND	1.		
100-41-4	TRANS-1,3-DICHLOROPROPENE	ND	1.		
106-93-4	ETHYLBENZENE ETHYLENE DIPPONTED	ND	1.		
76-13-1	ETHYLENE DIBROMIDE	ND	1.		
119-78-6	FREON-TF	ND	1.		
=	2-HEXANONE	ND	5.		
75-09-2	METHYLENE CHLORIDE	ND	5.		
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.		
100-42-5	STYRENE	ND	1.		
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.		
127-18-4	TETRACHLOROETHYLENE	ND	1.		
109-99-9	TETRAHYDROFURAN	ND	5.		
108-88-3	TOLUENE	ND	1.		
71-55-6	1,1,1-TRICHLOROETHANE	130.	1.		
79-00-5	1,1,2-TRICHLOROETHANE	4.	1.		
79-01-6	TRICHLOROETHYLENE	140.	1.		
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.		
108-05-4	VINYL ACETATE	ND	5.		
75-01-4	VINYL CHLORIDE	ND	5.		
95-47-6	TOTAL XYLENES	ND	1.		
	-	ND			

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-6S-1A

WCAS JOB #: 13882

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND VOA CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-9S-1A

WCAS JOB #: 13882

DATE RECEIVED: 10/09/89 RUN NUMBER: 13882V7
DATE EXTRACTED: 10/17/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 10/17/89 MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	ND	·=====================================
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE		-
107-06-2	1,2-DICHLOROETHANE	ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	1.
156-59-4	CIS-1,2-DICHLOROETHYLENE	ND	1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	7.	1.
78-87-5		ND	1.
10061-01-5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	2.	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	15.	ī.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
• •		ND	± •

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-9S-1A

WCAS JOB #: 13882

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-12S-1A

WCAS JOB #: 13882

DATE RECEIVED: 10/09/89 RUN NUMBER: 13882V8
DATE EXTRACTED: 10/17/89 SAMPLE AMOUNT: 5ML
DATE ANALYZED: 10/17/89 MATRIX: WATER

VOLATILE ORGANICS (EPA 624/8240) UNITS: UG/L (PPB)

	•		
CAS #	COMPOUND	CONCENTRATION	
67-64-1	ACETONE	ND	5.
71-43-2	BENZENE	ND	1.
75-27-4	BROMODICHLOROMETHANE	ND	1.
75-25-2	BROMOFORM	ND	1.
74-83-9	BROMOMETHANE	ND	5.
78-93-3	2-BUTANONE (MEK)	ND	5.
75-15-0	CARBON DISULFIDE	ND	1.
56-23-5	CARBON TETRACHLORIDE	ND	1.
108-90-7	CHLOROBENZENE	ND	1.
75-00-3	CHLOROETHANE	ND	5.
110-75-8	2-CHLOROETHYLVINYL ETHER	ND	10.
67-66-3	CHLOROFORM	ND	1.
74-87-3	CHLOROMETHANE	ND	5.
108-41-8	CHLOROTOLUENE	ND	1.
124-48-1	DIBROMOCHLOROMETHANE	ND	1.
95-50-1	1,2-DICHLOROBENZENE	ND	1.
541-73-1	1,3-DICHLOROBENZENE	ND	1.
106-46-7	1,4-DICHLOROBENZENE	ND	1.
75-34-3	1,1-DICHLOROETHANE	ND	1.
107-06-2	1,1-DICHLOROETHANE	- ND	1.
75-35-4	1,1-DICHLOROETHYLENE	ND	= :
156-59-4	CIS-1,2-DICHLOROETHYLENE		1.
156-60-5	TRANS-1,2-DICHLOROETHYLENE	ND	1.
78-87 - 5	1,2-DICHLOROPROPANE	ND	1.
10061-01-5		ND	1.
10061-01-5	CIS-1,3-DICHLOROPROPENE	ND	1.
	TRANS-1,3-DICHLOROPROPENE	ND	1.
100-41-4	ETHYLBENZENE	ND	1.
106-93-4	ETHYLENE DIBROMIDE	ND	1.
76-13-1	FREON-TF	4.	1.
119-78-6	2-HEXANONE	ND	5.
75-09-2	METHYLENE CHLORIDE	ND	5.
108-10-1	4-METHYL-2-PENTANONE (MIBK)	ND	5.
100-42-5	STYRENE	ND	1.
79-34-5	1,1,2,2-TETRACHLOROETHANE	ND	1.
127-18-4	TETRACHLOROETHYLENE	ND	1.
109-99-9	TETRAHYDROFURAN	ND	5.
108-88-3	TOLUENE	ND	1.
71-55-6	1,1,1-TRICHLOROETHANE	ND	1.
79-00-5	1,1,2-TRICHLOROETHANE	ND	1.
79-01-6	TRICHLOROETHYLENE	ND	1.
75-69-4	TRICHLOROFLUOROMETHANE	ND	1.
108-05-4	VINYL ACETATE	ND	5.
75-01-4	VINYL CHLORIDE	ND	5.
95-47-6	TOTAL XYLENES	ND	1.
JJ 47 0	availe file mental	110	+ •

CLIENT: WOODWARD-CLYDE CONSULTANTS SAMPLE: WCC-12S-1A WCAS JOB #: 13882

UNITS: UG/L (PPB)

APPROXIMATE

COMPOUND NAME

FRACTION CONCENTRATION

1 NONE FOUND

Data Reporting Qualifiers

- Value If the result is a value greater than or equal to the Detection Limit (DL), the value is reported.
- ND Indicates that the compound was analyzed for but not detected. The minimum DL for the sample with the ND is reported based on necessary concentration or dilution actions.
- TR Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified DL but greater than zero.

	Woodward-Clycle Consultants CHAIN OF CUSTODY RECORD						MENT NO.:			
	PROJE	CT NAME:	Ducila	3 Aircale	Co.	DATE	DATE 10 16189			
	PROJEC	CT NO.:	· · · · · · · · · · · · · · · · · · ·	39141863 J						
Sample Number	Location	Type of		Type of Container	Type Temp	of Preservation Chemical	Analysis Red	quire		
1~CC-13-H	W(2-15	-	·	40 ME VOA	16	JUNE .				
ncc-15-13		1	1	1		1				
4CC-75.12		Ī								
25-15	V									
wcc -63-1A										
ACC -65-18	T									
wcc-05-1R										
NCC-65-15	T									
WCC-125-1A	WCC-125									
NCC-123-1B										
UCC-125-12		,	/	1	1/	1				
wcc -123-15	7			— V	14					
			1			· · · · · · · · · · · · · · · · · · ·				
otal Number of S	Samples Shi	pped: / Z	Sampler	's Signature:	A Glo	<u>```</u>				
			· · · · · · · · · · · · · · · · · · ·	Received By	10		(Date		
Signature	10/	Man-		_ Signature	7141	in freely	<u>'/</u>	1		
Relinquished By: Signature Printed Name Company WCC			Printed Name	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	165 1-11tm	7	Tim			
CompanyReason	cliven, -	a hCA!	5							
linguished By:				Received By:	mh	· 101/		Date		
Signaturef_	. 71.10			Signature TQD						
Printed Name 15 11 FARE CALLADER			Printed Name Company	1 me	SSAMET		Tim			
Reason			_ Company	· / / ·						
Relinquished By			Received By:				Ďate			
Signature Said Sagar				_ Signature <u>Bo</u>	Signature Bale Ollan			9		
Printed Name				Printed Name_/		507		Tim		
Company Reason				_ Company	UCAS	13882	•	:3		
elinguished By:				Received By:				Date		
Signature				Signature			/	_ • • • •		
Printed Name				Printed Name	-		<u> </u>			

Special Shipment / Handling / Storage Requirements:

(ONTACT: Peter Glassman of Alitham (albider (7:4) 835-6886

* Note - This does not constitute authorization to proceed with analysis

LA-OR-0183-421

Ryocb Douglas Aircraft (C6) Torrance Facility Phase III Soil and Groundwater Flowchart

BOE-C6-0092371

